Skip to main content
Log in

NC codes optimization for geometric error compensation of five-axis machine tools with one novel mathematical model

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents the optimization compensation based on the mathematical expressions of geometric error model for the accuracy enhancement of five-axis machine tools. This method belongs to mathematical optimization. At first, optimal polynomials of basic error components of each axis are established by fitting the measured data of errors. The constant term is set as zero based on the properties of error components. The appropriate degree of polynomials is determined by introducing F value in statistics. Second, the bi-directional transformation between tool poses and NC codes is built with the forward and inverse kinematics of machine tools. More specifically, the postprocessor of SmartCNC500_DRTD five-axis machine tool is proposed for the calculation of NC codes. The obtained NC codes reflect the real movements of all axes relative to their zero positions. Then, one novel geometric error model is established with mathematical expressions. The model contains the ideal tool pose with the input of nominal NC code. It can evaluate the effect of compensation. It lays the foundation for the optimization. Next, the particle swarm optimization (PSO) is used to seek the optimal NC code. Particles are defined as tool poses to accord with the physical meanings of integrated geometric errors. The initial particles are generated around the ideal tool pose. New moving of particles is proposed to avoid the local optimum. The postprocessor is used to transform particles to NC codes to calculate their fitness. Finally, the experiments are conducted on this SmartCNC500_DRTD five-axis machine tool to testify the effectiveness of optimization compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen H, Fu J, He Y, Yao X (2012) On-line asynchronous compensation methods for static/quasi-static error implemented on CNC machine tools. Int J Mach Tools Manuf 60:14–26

    Article  Google Scholar 

  2. Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines—an update. CIRP Ann Manuf Technol 57(2):660–675

    Article  Google Scholar 

  3. Okafor AC, Ertekin YM (2000) Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics. Int J Mach Tools Manuf 40(8):1199–1213

    Article  Google Scholar 

  4. Khan A, Chen W (2011) A methodology for systematic geometric error compensation in five-axis machine tools. Int J Adv Manuf Technol 53(5–8):615–628

    Article  Google Scholar 

  5. Chen GS, Mei XS, Li HL (2013) Geometric error modeling and compensation for large-scale grinding machine tools with multi-axes. Int J Adv Manuf Technol 69(9–12):2583–2592

    Article  Google Scholar 

  6. Li Z, Yang J, Fan K, Zhang Y (2015) Integrated geometric and thermal error modeling and compensation for vertical machining centers. Int J Adv Manuf Technol 76(5–8):1139–1150

    Article  Google Scholar 

  7. Lin Y, Shen Y (2003) Modelling of five-axis machine tool metrology models using the matrix summation approach. Int J Adv Manuf Technol 21(4):243–248

    Article  Google Scholar 

  8. Uddin MS, Ibaraki S, Matsubara A, Matsushita T (2009) Prediction and compensation of machining geometric errors of five-axis machining centers with kinematic errors. Precis Eng J Int Soc Precis Eng Nanotechnol 33(2):194–201

    Google Scholar 

  9. Kong LB, Cheung CF (2012) Prediction of surface generation in ultra-precision raster milling of optical freeform surfaces using an integrated kinematics error model. Adv Eng Softw 45(1):124–136

    Article  Google Scholar 

  10. Kong LB, Cheung CF, To S, Lee WB, Du JJ, Zhang ZJ (2008) A kinematics and experimental analysis of form error compensation in ultra-precision machining. Int J Mach Tools Manuf 48(12–13):1408–1419

    Article  Google Scholar 

  11. Fu G, Fu J, Xu Y, Chen Z (2014) Product of exponential model for geometric error integration of multi-axis machine tools. Int J Adv Manuf Technol 71(9–12):1653–1667

    Article  Google Scholar 

  12. Chen J, Lin S, He B (2014) Geometric error compensation for multi-axis CNC machines based on differential transformation. Int J Adv Manuf Technol 71(1–4):635–642

    Article  Google Scholar 

  13. Kiridena VSB, Ferreira PM (1994) Kinematic modeling of quasistatic errors of three-axis machining centers. Int J Mach Tools Manuf 34(1):85–100

    Article  Google Scholar 

  14. Jung JH, Choi JP, Lee SJ (2006) Machining accuracy enhancement by compensating for volumetric errors of a machine tool and on-machine measurement. J Mater Process Technol 174(1–3):56–66

    Article  Google Scholar 

  15. Lee KI, Lee DM, Yang SH (2012) Parametric modeling and estimation of geometric errors for a rotary axis using double ball-bar. Int J Adv Manuf Technol 62(5–8):741–750

    Article  Google Scholar 

  16. Mir YA, Mayer JRR, Fortin C (2002) Tool path error prediction of a five-axis machine tool with geometric errors. Proc IME B J Eng Manufact 216(5):697–712

    Article  Google Scholar 

  17. Fan K, Yang J, Yang L (2013) Orthogonal polynomials-based thermally induced spindle and geometric error modeling and compensation. Int J Adv Manuf Technol 65(9–12):1791–1800

    Article  Google Scholar 

  18. Fan K, Yang J, Yang L (2014) Unified error model based spatial error compensation for four types of CNC machining center: part II—unified model based spatial error compensation. Mech Syst Signal Process 49(1–2):63–76

    Article  MathSciNet  Google Scholar 

  19. Zhu S, Ding G, Qin S, Lei J, Zhuang L, Yan K (2012) Integrated geometric error modeling, identification and compensation of CNC machine tools. Int J Mach Tools Manuf 52(1):24–29

    Article  Google Scholar 

  20. Tsutsumi M, Tone S, Kato N, Sato R (2013) Enhancement of geometric accuracy of five-axis machining centers based on identification and compensation of geometric deviations. Int J Mach Tools Manuf 68:11–20

    Article  Google Scholar 

  21. Nojedeh MV, Habibi M, Arezoo B (2011) Tool path accuracy enhancement through geometrical error compensation. Int J Mach Tools Manuf 51(6):471–482

    Article  Google Scholar 

  22. Lei WT, Sung MP (2008) NURBS-based fast geometric error compensation for CNC machine tools. Int J Mach Tools Manuf 48(3–4):307–319

    Article  Google Scholar 

  23. Hsu YY, Wang SS (2007) A new compensation method for geometry errors of five-axis machine tools. Int J Mach Tools Manuf 47(2):352–360

    Article  Google Scholar 

  24. Cui G, Lu Y, Li J, Gao D, Yao Y (2012) Geometric error compensation software system for CNC machine tools based on NC program reconstructing. Int J Adv Manuf Technol 63(1–4):169–180

    Article  Google Scholar 

  25. Peng FY, Ma JY, Wang W, Duan XY, Sun PP, Yan R (2013) Total differential methods based universal post processing algorithm considering geometric error for multi-axis NC machine tool. Int J Mach Tools Manuf 70:53–62

    Article  Google Scholar 

  26. Fu G, Fu J, Xu Y, Chen Z, Lai J (2015) Accuracy enhancement of five-axis machine tool based on differential motion matrix: geometric error modeling, identification and compensation. Int J Mach Tools Manuf 89:170–181

    Article  Google Scholar 

  27. Lin Z, Fu J, Shen H, Gan W (2014) On the workpiece setup optimization for five-axis machining with RTCP function. Int J Adv Manuf Technol 74(1–4):187–197

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, G., Fu, J., Shen, H. et al. NC codes optimization for geometric error compensation of five-axis machine tools with one novel mathematical model. Int J Adv Manuf Technol 80, 1879–1894 (2015). https://doi.org/10.1007/s00170-015-7162-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7162-7

Keywords

Navigation