Skip to main content
Log in

Ablation and morphological evolution of micro-holes in stainless steel with picosecond laser pulses

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

An experimental study is presented of micro-hole drilling on the surface of stainless steel using a 10-ps Q-switched Nd:VAN pulsed laser at two wavelengths, 532 and 1064 nm, with multiple powers and different number of pulses. Results show that two primary ablation mechanisms for ultrashort laser machining, i.e., vaporization and phase explosion, which correspond to gentle and strong ablations, are correlated mainly with the applied laser power. From measured data, two ablation thresholds are calculated using a piece-wise linear fitting. Moreover, surface recast layer associated with strong ablation can be eliminated by an appropriate selection of laser processing parameters. The Hirschegg model is applied to analyze the evolution of hole depth as a function of laser processing parameters for the two wavelengths. For the 532-nm wavelength laser ablation, the shapes and morphology of micro-holes evolve differently with low power from high power. In addition, the related reasons inducing multiple featured hole shapes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nebel A, Herrmann T, Henrich B, Knappe R (2005) Fast micromachining using picosecond lasers. Proc SPIE 5706:87–98

    Article  Google Scholar 

  2. Cheng J, Perrie W, Sharp M, Edwardson SP, Semaltianos NG, Dearden G, Watkins KG (2009) Single-pulse drilling study on Au, Al and Ti alloy by using a picosecond laser. Appl Phys A 95:739–746

    Article  Google Scholar 

  3. Dausinger F, Hügel H, Konov VI (2003) Micro-machining with ultrashort laser pulses: from basic understanding to technical applications. Proc SPIE 5147:106–115

    Article  Google Scholar 

  4. Schulz W, Eppelt U, Poprawe R (2013) Review on laser drilling I. Fundamentals, modeling, and simulation. J Laser Appl 25:012006–1–17

    Article  Google Scholar 

  5. Raciukaitis G, Brtkas M (2004) Micro-machining of silicon and glass with picosecond lasers. Proc SPIE 5662:717–721

    Article  Google Scholar 

  6. Ostendorf A, Kamlage G, Klug U, Korte F, Chichkov BN (2005) Femtosecond versus picosecond laser ablation. Proc SPIE 5713:1–8

    Article  Google Scholar 

  7. Karnakis D, Rutterford G, Knowles M, Dobrev T, Petkov P, Dimov S (2006) High quality laser milling of ceramics, dielectrics and metals using nanosecond and picosecond lasers. Proc SPIE 6106:610604–1–11

    Google Scholar 

  8. Lleinbauer J, Knappe R, Wallenstein R (2005) A powerful diode-pumped laser source for micro-machining with ps pulses in the infrared, the visible and the ultraviolet. Appl Phys B 80:315–320

    Article  Google Scholar 

  9. Zhao WQ, Wang WJ, Jiang GD, Mei XS, Liu B (2014) Improving the efficiency of picosecond laser micromachining of stainless steel. Radiat Eff Defect Solid 169:102–108

    Article  Google Scholar 

  10. Tunna L, Khan A, O’Neill W, Sutcliffe CJ (2006) The effect of processing wavelength and fluence on the microdrilling of 316 L stainless steel with a diode pumped solid state laser. J Laser Appl 18:205–209

    Article  Google Scholar 

  11. Spiro A, Lowe M, Pasmanik G (2012) Drilling rate of five metals with picosecond laser pulses at 355, 532, and 1064 nm. Appl Phys A 107:801–808

    Article  Google Scholar 

  12. Stašić J, Gaković B, Trtica M, Desai T, Volpe L (2012) Superficial changes on the Inconel 600 superalloy by picosecond Nd:YAG laser operating at 1064, 532, and 266 nm: comparative study. Laser Part Beams 30:249–257

    Article  Google Scholar 

  13. Wang WJ, Mei XS, Jiang GD (2009) Control of microstructure shape and morphology in femtosecond laser ablation of imprint rollers. Int J Adv Manuf Technol 41:504–512

    Article  Google Scholar 

  14. Döring S, Richter S, Tünnermann A, Nolte S (2011) Evolution of hole depth and shape in ultrashort pulse deep drilling in silicon. Appl Phys A 105:69–74

    Article  Google Scholar 

  15. Döring S, Ullsperger T, Heisler F, Richter S, Tünnermann A, Nolte S (2013) Hole formation process in ultrashort pulse laser percussion drilling. Phys Procedia 41:431–440

    Article  Google Scholar 

  16. Pandey ND, Shan HS, Bharti A (2006) Percussion drilling with laser: hole completion criterion. Int J Adv Manuf Technol 28:863–868

    Article  Google Scholar 

  17. Walther K, Brajdic M, Kreutz EW (2008) Enhanced processing speed in laser drilling of stainless steel by spatially and temporally superposed pulsed Nd:YAG laser radiation. Int J Adv Manuf Technol 35:895–899

    Article  Google Scholar 

  18. Jahns D, Kaszemeikat T, Mueller N, Ashkenasi D, Dietrich R, Eichler HJ (2013) Laser trepanning of stainless steel. Phys Procedia 41:630–635

    Article  Google Scholar 

  19. Chien WT, Hou SC (2007) Investigating the recast layer formed during the laser trepan drilling of Inconel 718 using the Taguchi method. Int J Adv Manuf Technol 33:308–316

    Article  Google Scholar 

  20. Foehl C, Breitling D, Jasper K, Radtke J, Dausinger F (2002) Precision drilling of metals and ceramics with short and ultrashort pulsed solid state lasers. Proc SPIE 4426:104–107

    Article  Google Scholar 

  21. Dhar S, Saini N, Purohit R (2006) A review on laser drilling and its techniques. Proc Int Conf Adv Mech Eng 1–3

  22. Bonse J, Wrobel JM, Krüger J, Kautek W (2001) Ultra short-pulse laser ablation of indium phosphide in air. Appl Phys A 72:89–94

  23. Liu JM (1982) Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Lett 7:196–198

    Article  Google Scholar 

  24. Semaltianos NG, Perrie W, French P, Sharp M, Dearden G, Logothetidis S, Watkins KG (2009) Femtosecond laser ablation characteristics of nickel-based super alloy C263. Appl Phys A 94:999–1009

    Article  Google Scholar 

  25. Wang WJ, Mei XS, Jiang GD, Lei ST, Yang CJ (2008) Effect of two typical focus positions on microstructure shape and morphology in femtosecond laser multi-pulse ablation of metals. Appl Surf Sci 255:2303–2311

    Article  Google Scholar 

  26. Dausinger F (2000) Precise drilling with short pulsed lasers. Proc SPIE 3888:180–187

    Article  Google Scholar 

  27. Döring S, Richtera S, Nolte S, Tünnermann A (2011) In-situ observation of the hole formation during deep drilling with ultrashort laser pulses. Proc SPIE 7925:792517–1–8

    Google Scholar 

  28. König J (2005) Plasma evolution during metal ablation with ultrashort laser pulses. Opt Express 13:10597–10607

    Article  Google Scholar 

  29. Russo RE, Mao XL, Liu HC, Yoo JH, Mao SS (1999) Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation. Appl Phys A 69:S887–S894

    Article  Google Scholar 

  30. Mao SS, Mao X, Greif R, Russo RE (2000) Initiation of an early-stage plasma during picosecond laser ablation of solids. Appl Phys Lett 77:2464–2466

    Article  Google Scholar 

  31. Račiukaitis G, Brikas M, Gečys P, Voisiat B, Gedvilas M (2009) Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high? J Laser Micro Nanoeng 4:186–191

    Article  Google Scholar 

  32. Kononenko TV, Klimentov SM, Garnov SV, Konov VI, Breitling D, Föhl C, Ruf A, Radtke J, Dausinger F (2002) Hole formation process in laser deep drilling with short and ultrashort pulses. Proc SPIE 4426:108–112

    Article  Google Scholar 

  33. Utéza O, Sanner N, Chimier B, Brocas A, Varkentina N, Sentis M, Lassonde P, Légaré F, Kieffer JC (2011) Control of material removal of fused silica with single pulses of few optical cycles to sub-picosecond duration. Appl Phys A 105:131–141

    Article  Google Scholar 

  34. Breitling D, Ruf A, Dausinger F (2004) Fundamental aspects in machining of metals with short and ultrashort laser pulses. Proc SPIE 5339:49–63

    Article  Google Scholar 

  35. Zhao WQ, Wang WJ, Mei XS, Jiang GD, Liu B (2014) Investigations of morphological features of picosecond dual-wavelength laser ablation of stainless steel. Opt Laser Technol 58:94–99

    Article  Google Scholar 

  36. Föhl C, Dausinger F (2003) High precision deep drilling with ultrashort pulses. Proc SPIE 5063:346–351

    Article  Google Scholar 

  37. Breitling D, Föhl C, Dausinger F, Kononenko T, Konov V (2004) Drilling of metals, femtosecond technology for technical and medical applications. Top Appl Phys 96:131–156

    Article  Google Scholar 

  38. Modest MF (2006) Effects of multiple reflections on hole formation during short-pulsed laser drilling. J Heat Transf 128:653–661

    Article  Google Scholar 

  39. Ruf A, Berger P, Dausinger F, Hügel H (2001) Analytical investigations on geometrical influences on laser drilling. J Phys D Appl Phys 34:2918–2925

    Article  Google Scholar 

  40. Klimentov SM, Kononenko TV, Pivovarov PA, Garnov SV, Konov VI, Breitling D, Dausinger F (2003) Role of gas environment in the process of deep hole drilling by ultra-short laser pulses. Proc SPIE 4830:515–520

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Wang, W., Jiang, G. et al. Ablation and morphological evolution of micro-holes in stainless steel with picosecond laser pulses. Int J Adv Manuf Technol 80, 1713–1720 (2015). https://doi.org/10.1007/s00170-015-7145-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7145-8

Keywords

Navigation