Skip to main content
Log in

A review of accuracy enhancement in microdrilling operations

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Micromachining, which is a manufacturing technique to produce miniature parts, carries with it the major factor of precision in machining. The various processes of micromachining, be it contact or non contact methods, have their own merits and demerits. However, producing microstructures such as micro-holes which find widespread application in highly sensitive products such as automotive fuel injection nozzles, watches, medical electronics, and camera parts requires a high degree of accuracy in its profile parameters. Microdrilling, the most ideal micromachining process to generate micro-holes, can generate deeper holes with better straightness, better roundness, and smoother surfaces. This paper focuses on all existing microdrilling techniques that have been used in producing micro-holes along with the various strategies that have been adapted to improve the accuracy in hole dimensioning and its shape. The review of the various accuracy-related microdrilling operations will enable one to understand better the need for accuracy in micro-hole production, the various microdrilling techniques, and most essentially how the accuracy has been improved with technology advancement and better research. It also provides an overview which will help further propagation and implementation of more techniques to further enhance the accuracy of microdrilling operations, bringing about precise components of micromachining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masuzawa T (2000) State of the art of micromachining. Ann CIRP 49:473–488

    Article  Google Scholar 

  2. Yu ZY, Rajurkar KP, Shen H (2002) High aspect ratio and complex shaped blind micro holes by micro EDM. Ann CIRP 51:359–362

    Article  Google Scholar 

  3. Takahata K, Gianchandani YB (2002) Batch mode micro-electro-discharge machining. J Microelectromech Syst 11:102–110

    Article  Google Scholar 

  4. Her MG, Weng FT (2001) Micro-hole machining of copper using the electro-discharge machining process with a tungsten carbide electrode compared with a copper electrode. Int J Adv Manuf Technol 17:715–719

    Article  Google Scholar 

  5. Mithu MAH, Fantoni G, Ciampi J (2011) A step towards the in-process monitoring for electrochemical microdrilling. Int J Adv Manuf Technol 57:969–982

    Article  Google Scholar 

  6. Heeren PH, Beuret C, Larsso 0, Bertholds A (1996) Microstructuring of silicon by electro-discharge machining (EDM)—part II: applications. Proc Eurosensors X:255–258

    Google Scholar 

  7. Masuzawa T, Tsukamota J, Fujino M (1989) Drilling of deep microholes by EDM. Ann CIRP 38:195–198

    Article  Google Scholar 

  8. Li Y, Guo M, Zhou Z, Hu M (2002) Micro electro discharge machine with an inchworm type of micro feed mechanism. Precis Eng J Int Soc Precis Eng Nanotechnol 26:7–14

    Google Scholar 

  9. Kim DJ, Yi SM, Lee YS, Chu CN (2006) Straight hole micro EDM with a cylindrical tool using a variable capacitance method accompanied by ultrasonic vibration. J Micromech Microeng 16:1092–1097

    Article  Google Scholar 

  10. Yan BH, Wang AC, Huang CY, Huang FY (2002) Study of precision micro-holes in borosilicate glass using micro EDM combined with micro ultrasonic vibration machining. Int J Mach Tools Manuf 42:1105–1112

    Article  Google Scholar 

  11. Yeo SH, Murali M, Cheah HT (2004) Magnetic field assisted micro electro-discharge machining. J Micromech Microeng 14:1526–1529

    Article  Google Scholar 

  12. Diver C, Atkinson J, Helml HJ, Li L (2004) Micro-EDM drilling of tapered holes for industrial applications. J Mater Process Technol 149:296–303

    Article  Google Scholar 

  13. Kaminski PC, Capuano MN (2003) Micro hole machining by conventional penetration electrical discharge machine. Int J Mach Tools Manuf 43:1143–1149

    Article  Google Scholar 

  14. Pham DT, Dimov SS, Petkov PV, Dobrev T (2004) Laser milling as a rapid micro manufacturing process, proceedings of the I MECH E part B. J Eng Manuf 218(1):1–7

    Article  Google Scholar 

  15. G Cusanelli, M Minello, F Torchia, W Ammann, PE Grize (2007) Properties of micro-holes for nozzle by micro-EDM. Proceedings of 15th International Symposium Electromachining. pp. 241–245

  16. Liu K, Lauwers B, Reynaerts D (2010) Process capabilities of micro-EDM and its applications. Int J Adv Manuf Technol 47(1–4):11–19

    Article  Google Scholar 

  17. Mohd Amri Lajis HCD, Mohd Radzi AKM, Nurul Amin (2009) The implementation of Taguchi method on EDM process of tungsten carbide. Eur J Sci Res ISSN 1450-216X 26(4); 609–617

  18. Masuzawa T, Tönshoff HK (1997) Three-dimensional micromachining by machine tools. Ann CIRP 46(2):621–628

    Article  Google Scholar 

  19. Xu J, Guo B, Shan D, Wang Z, Li M, Fei X (2014) Micro-punching process of stainless steel foil with micro-die fabricated by micro-EDM. Microsyst Technol 20(1):83–89

    Article  Google Scholar 

  20. Pedder J E A, Holmes A. S. Excimer laser micromachining of polymers using half-tone masks: mask design and process optimization

  21. Holmes AS (2004) Excimer laser micromachining with half-tone masks for the fabrication of 3-D microstructures. IEE Proc: Sci Meas Technol 151(2):85–92

    Article  Google Scholar 

  22. Shen SC, Pan CT, Wang YR, Chang CC (2006) Fabrication of integrated nozzle plates for inkjet print head using microinjection process. Sensors Actuators A 127:241–247

    Article  Google Scholar 

  23. Chem GL, Wang SD (2007) Punching of non circular microholes and development of micro-forming. Precis Eng 31:210–217

    Article  Google Scholar 

  24. Rajurkara KP, Sundaramb MM, Malshec AP (2013) Review of electrochemical and electrodischarge machining. Ann CIRP 6:13–26

    Google Scholar 

  25. Zhu D, Xu HY (2002) Improvement of electrochemical machining accuracy by using dual pole tool. J Mater Process Technol 129(1–3):15–18

    Article  Google Scholar 

  26. Liu GH et al (2009) Research on side-insulation of tool electrode for micro electrochemical machining. Adv Mater Res 60–61:380–387

    Article  Google Scholar 

  27. Liu Y et al (2010) Development of microelectrodes for electrochemical micromachining. Int J Adv Manuf Technol 55(1–4):195–203

    Google Scholar 

  28. Zhu D, Zeng YB, Xu ZY, Zhang XY (2011) Precision machining of small holes by the hybrid process of electrochemical removal and grinding. CIRP Ann Manuf Technol 60(1):247–250

    Article  Google Scholar 

  29. Jahan M, Malshe A, Rajurkar K (2012) Experimental investigation and characterization of nano-scale dry electro-machining. J Manuf Process 14:443–451

    Article  Google Scholar 

  30. Park BJ, Kim BH, Chu CN (2006) The effect of tool electrode size on characteristics of micro electrochemical machining. CIRP Ann Manuf Technol 55:197

    Article  Google Scholar 

  31. Van den Brand J, Van Gils S, Beentjes PCJ, Terryn H, Sivel V, de Wit JHW (2004) Improving the adhesion between epoxy coatings and aluminium substrates. Prog Org Coat 51:339

    Article  Google Scholar 

  32. Hunga J, Liub H, Changb Y, Hungb K, Liua S (2013) Development of helical electrode insulation layer for electrochemical microdrilling. The Seventeenth CIRP Conference on Electro Physical and Chemical Machining (ISEM). Ann CIRP 6:373–377

    Google Scholar 

  33. Ahn SH, Ryu SH, Choi DK, Chu CN (2004) Electrochemical microdrilling using short pulses. Precis Eng 28(2):129–134

    Article  Google Scholar 

  34. Zhang D-y, Feng X-j, Wang L-j, Chen D-C (1994) Int J Mach Tools Manuf 34(6):847–857

    Article  Google Scholar 

  35. Pujana J, Rivero A, Celaya A, Lo’pez de Lacalle LN (2009) Analysis of ultrasonic-assisted drilling of Ti6Al4V. Int J Mach Tools Manuf 49:500–508

    Article  Google Scholar 

  36. Tokarev VN, Wilson JIB, Jubber MG, John P, Milne DK (1995) DiamRelat Mater 4:169

    Article  Google Scholar 

  37. Tokarev VN, Kaplan AFH (1998) Modelling of melt depth in wide range of laser pulse intensities. Lasers Eng (IF 0,19) 7(3–4):295–332

    Google Scholar 

  38. Tokarev VN, Lopez J, Lazare S (2000) Modelling of high-aspect ratio microdrilling of polymers with UV laser ablation. Appl Surf Sci 168:75–78

    Article  Google Scholar 

  39. Lazare S, Tokarev VN (2007) A laser beam model for high performance microdrilling. J Phys Conf Ser 59:32–35

    Article  Google Scholar 

  40. Ozegowski M, Metev S, Sepold G (1998) Appl Surf Sci 127–129:614

    Article  Google Scholar 

  41. Farrokhi H, Zhou W, Zheng HY, Li Z (2010) Characterization of silicon wafer surface irradiated with fiber laser. Key Eng Mater 447–448:715–719

    Article  Google Scholar 

  42. Biffi CA, Lecis N, Previtali B, Vedani M, Vimercati GM (2011) Fiber laser microdrilling of titanium and its effect on material microstructure. Int J Adv Manuf Technol 54(1–4):149–160

    Article  Google Scholar 

  43. Ganesh RK, Bowley WW, Bellantone RR, Hahn Y (1996) A model for laser hole drilling in metals. J Comput Phys 125:161–176

    Article  MATH  Google Scholar 

  44. Mishra S, Yadava V (2013) Modeling and optimization of laser beam percussion drilling of nickel-based superalloy sheet using Nd: YAG laser. Opt Lasers Eng 51:681–695

    Article  Google Scholar 

  45. Zhi-Ping Zheng, Kun-Ling Wu, Yu-Shan Hsu, Fuang-Yuan Huang, Biing-Hwa Yan (2007) Feasibility of 3D surface machining on Pyrex glass by electrochemical discharge machining (ECDM). Proc. AEMS07, Nagoya Japan; 28–30

  46. Murali Meenakshi Sundaram, Hybrid machining processes, A.Y.C. Nee (ed.), Handbook of manufacturing engineering & technology

  47. Gradeen AG, Spelt JK, Papini M (2012) Cryogenic abrasive jet machining of polydimethylsiloxane at different temperatures. Wear 274–275:335–344

    Article  Google Scholar 

  48. Wang ZY, Rajurkar KP, Munugappan M (1996) Cryogenic PCBN turning of ceramic (Si3N4). Wear 195(1–2):1–6

    Article  Google Scholar 

  49. Okasha MM, Mativenga PT, Driver N, Li L (2010) Sequential laser and mechanical micro-drilling of Ni superalloy for aerospace application. CIRP Ann Manuf Technol 59:199–202

    Article  Google Scholar 

  50. Zhu Z, Dhokia VG, Nassehi A, Newman ST (2013) A review of hybrid manufacturing processes—state of the art and future perspectives. Int J Comput Integr Manuf 26(7):596–615

    Article  Google Scholar 

  51. Xu X, Wang LH, Newman ST (2011) Computer-aided process planning—a critical review of recent developments and future trends. Int J Comput Integr Manuf 24(1):1–31

    Article  MATH  Google Scholar 

  52. Nassehi A, Newman S, Dhokia V, Zhu Z, Asrai RI (2011) Using formal methods to model hybrid manufacturing processes. 4th International Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV2011), Montreal, Canada

  53. Kudla L (2001) Influence of feed motion features on small holes drilling process. J Mater Process Technol 109:236–241

    Article  Google Scholar 

  54. Mithu MAH, Fantoni G, Ciampi J, Santochi M (2012) On how tool geometry, applied frequency and machining parameters influence electrochemical microdrilling. Ann CIRP J Manuf Sci Technol 5:202–221

    Article  Google Scholar 

  55. Kudla LA (2011) Fracture phenomena of microdrills in static and dynamic conditions. Eng Fract Mech 78:1–12

    Article  Google Scholar 

  56. Potz D, Christ W, Dittus B (2000) Diesel nozzle—the determining interface between injection system and combustion chamber. THIESEL pp. 249–258

  57. Tsui HP, Hung JC, You JC, Yan BH (2008) Improvement of electrochemical microdrilling accuracy using helical tool. Mater Manuf Process 23:499–505

    Article  Google Scholar 

  58. Lee K, Stirn B, Dornfeld D A (2001) Burr formation in micro-machining aluminum, 6061-T6. Proceedings of the 10th International Conference Precision Engineering, Yokohama, Japan, pp. 47–51

  59. Cheng-Kuang Yanga, Kun-Ling Wub, Jung-Chou Hung. Enhancement of ECDM efficiency and accuracy by spherical tool electrode. Int J Mach Tools Manuf 51(6):201, 528–535

  60. Murali M. Sundaram, and Kamlakar P. Rajurkar. A study on the performance of copper-graphite as tool material in micromachining by micro electro discharge machining. Center for Nontraditional Manufacturing Research, University of Nebraska-Lincoln, Lincoln, NE, USA

  61. Uhlmann E, Reohner M, Langmack M (2010) Micro-EDM. In: Yi Qin, Micromanufacturing engineering and technology. Elsevier, pp. 39–58

  62. Watanabe H, Tsuzaka H, Masuda M (2008) Microdrilling for printed circuit boards(PCBs)—influence of radial run-out of microdrills on hole quality. Precis Eng 32:329–335

    Article  Google Scholar 

  63. Bhandaria B, Honga Y-S, Yoona H-S, Moona J-S, Phama M-Q, Leeb G-B, Huangc Y, Linkec BS, Dornfeldc DA, Ahna S-H (2014) Development of a micro-drilling burr-control chart for PCB drilling. Precis Eng 38:221–229

    Article  Google Scholar 

  64. Stein JM, Dornfeld DA (1997) Burr formation in drilling miniature holes. CIRP Ann 46:63–66

    Article  Google Scholar 

  65. Ahn JH, Lim HS, Dornfeld DA (1996) Burr and shape distortion in micro-grooving of optical components. Proc ASPE 14:496–499

    Google Scholar 

  66. Iwata K, Moriwaki T, Hoshi T (1981) Basic study of high speed micro deep drilling. CIRP Ann 30(1):27–30

    Article  Google Scholar 

  67. Fujishima M, Kakino Y, Matsubara A, Sato T, Nishiura I. Study on advanced drilling by intelligent machine tools (1st report)—monitoring of tool failure and improvement of productivity. J.JSPE 200(66): 1792–1796

  68. Kayaba H, Inasaki I (1994) Detection of the rotating cutting tool failure with an acoustic emission sensor. Trans JSME Ser C 60:4374–4379

    Article  Google Scholar 

  69. Kondo E, Shimana K (2012) Monitoring of prefailure phase and detection of tool breakage in micro-drilling operations. Procedia CIRP 1:581–586

    Article  Google Scholar 

  70. Kim DW, Lee YS, Park MS, Chu CN (2009) Tool life improvement by peck drilling and thrust force monitoring during deep-micro-hole drilling of steel. Int J Mach Tools Manuf 49:246–255

    Article  Google Scholar 

  71. Coombs CF (2007). Printed circuits handbook. McGraw-Hill, Professional Publishing, p. 574

  72. Zheng L, Wang C, Yang L, Song Y, Fub L (2012) Characteristics of chip formation in the micro-drilling of multi-material sheets. Int J Mach Tools Manuf 52(1):40–49

    Article  Google Scholar 

  73. Mauri R, Matti S (1995) Tool wear and failure in the drilling of stainless steel. J Mater Process Technol 52:35–43

    Article  Google Scholar 

  74. Onikura H, Ohnishl O et al (1996) Effects of ultrasonic vibration on machining accuracy in microdrilling. Int J JSPE 30(3):210–216

    Google Scholar 

  75. Chern G-L, Lee H-J (2006) Using workpiece vibration cutting for micro-drilling. Int J Adv Manuf Technol 27:688–692

    Article  Google Scholar 

  76. Li L, Low DKY and M Ghoreshi. Hole taper characterisation and control in laser percussion drilling. Laser Processing Research Centre, UMIST, Manchester, UK

  77. Afazova SM, Ronaldoa R, Londsdaleb D, Zdebskia D, Ratcheva SM (2013) Analysis of micro-drilling of glassy ceramic Macor nozzles for scanning droplet systems. J Mater Process Technol 213:221–228

    Article  Google Scholar 

  78. Khan AH, Celotto S, Tunna L, O’Neill W, Sutcliffeb CJ (2007) Influence of microsupersonic gas jets on nanosecond laser percussion drilling. Opt Lasers Eng 6:709–718

    Article  Google Scholar 

  79. Potz D, Christ W, Dittus B (2000) Diesel nozzle—the determining interface between injection system and combustion chamber. THIESEL, pp. 249–258

  80. Cheng CM, Leduc PR (2006) Microdrilling for fabricationg microscale holes in soft matter. Appl Phys A 85(2):195–198

    Article  Google Scholar 

  81. Okasha MM, Mativenga PT (2011) Sequential laser mechanical microdrilling of Inconel 718 alloy. J Manuf Sci Eng 133:011008–1

    Article  Google Scholar 

  82. Woon KS, Rahman M, Neo KS, Liu K (2008) The effect of tool edge radius on the contact phenomenon of tool-based micromachining. Int J Tools Manuf 48(12–13):1395–1407

    Article  Google Scholar 

  83. Min S, Sangermann H, Mertens C, Dornfeld D (2008) A study on initial contact detection for precision micro-mold and surface generation of vertical side walls in micromachining. Annals CIRP 1:109–112

    Article  Google Scholar 

  84. Aoyama T, Takahata N (2010) Development of the automatic positioning system of microtool edge in micromachining of glass plate for microfluidic chips. Ann CIRP Manuf Technol 59(1):551–554

    Article  Google Scholar 

  85. Rahman M, Asad ABMA, Wong YS (2014) Introduction to advanced machining technologies, comprehensive materials processing. Adv Mach Technol 11:7–13

    Google Scholar 

  86. Maillard P, Despont B, Bleuler H, Wuthrich R (2007) Geometrical characterization of micro-holes drilled in glass by gravity-feed with spark assisted chemical engraving. J Micromech Microeng 17(7):1343

    Article  Google Scholar 

  87. Ranko T, Yasuhiro K, Tojiro A, Hitoshi O, Seiji H (2012) Ultrasonic vibration and cavitation-aided micromachining of hard and brittle materials. 5th CIRP Conference on High Performance Cutting 2012. Procedia CIRP 1:342–346

    Article  Google Scholar 

  88. Dhanvijay MR, Ahuja BB (2014) Micromachining of ceramics by electrochemical discharge process considering stagnant and electrolyte flow method. Procedia Technol 14:165–172

    Article  Google Scholar 

  89. Kima D-J, Ahnb Y, Leeb S-H, Kimc Y-K (2006) Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass. Int J Mach Tools Manuf 46(10):1064–1067

    Article  Google Scholar 

  90. Fumiaki G, Shigeo K (1992) Measurement of the plastically deformed domain caused by microdrilling in CdS single crystal. Precis Eng 4:243–245

    Google Scholar 

  91. Hung JC, Lin JK, Yan BH, Liu HS, Ho PH (2006) Using a helical micro-tool in micro-EDM combined with ultrasonic vibration for micro-hole machining. J Micromech Microeng 16:2705–2713

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Natarajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyacinth Suganthi, X., Natarajan, U. & Ramasubbu, N. A review of accuracy enhancement in microdrilling operations. Int J Adv Manuf Technol 81, 199–217 (2015). https://doi.org/10.1007/s00170-015-6900-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-6900-1

Keywords

Navigation