Skip to main content
Log in

Temperature distribution and thermal error prediction of a CNC feed system under varying operating conditions

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In high-speed and high-precision feed systems, the thermal errors are mainly caused by the non-uniform temperature variations and time-varying thermal deformations under different operating conditions. The research work undertaken herein ultimately aims to develop a generic method which is capable of evaluating the temperature rises of heat sources (such as supporting bearings and ball screw nut) and thermal positioning error of the feed system induced by varying operating conditions (feed speed, cutting load, and preload of ball screw). Experiments were carried out on a high-speed feed system experimental bench, and the influences of operating conditions on temperature rises of supporting bearings and ball screw nut were analyzed. Based on wavelet neural network and NARMA-L2 model, the relationship between temperature rise of supporting bearings and operating conditions was established. Furthermore, with the temperature of ball screw nut set to be a moving heating source load, the temperature and thermal deformation distributions of ball screw under bearings and ball screw nut heat sources were simulated. The experiment and simulation results show that the recommended modeling method can be used to predict thermal positioning errors of feed system with good accuracy. The work described lays a solid foundation of thermal error prediction and compensation in a feed system under varying operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryan J (1990) International status of thermal error research. Ann CIRP 39(2):645–656. doi:10.1016/S0007-8506(07)63001-7

    Article  MathSciNet  Google Scholar 

  2. Kang Y, Chang CW, Huang Y, Hsu CL, Nieh IF (2007) Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools. Int J Mach Tools Manuf 47(2):376–387. doi:10.1016/j.ijmachtools.2006.03.007

    Article  Google Scholar 

  3. Yan JY, Yang JG (2009) Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation. Int J Adv Manuf Technol 43(11–12):1124–1132. doi:10.1007/s00170-008-1791-z

    Article  Google Scholar 

  4. Erkorkmaz K, Gorniak JM, Gordon DJ (2010) Precision machine tool X-Y stage utilizing a planar air bearing arrangement. Ann CIRP 59(1):425–429. doi:10.1016/j.cirp.2010.03.086

    Article  Google Scholar 

  5. Xu ZZ, Liu XJ, Kim HK, Shin JH, Lyu SK (2011) Thermal error forecast and performance evaluation for an air-cooling ball screw system. Int J Mach Tools Manuf 51(7–8):605–611. doi:10.1016/j.ijmachtools.2011.04.001

    Article  Google Scholar 

  6. Liang YC, Su H, Lu LH, Chen WQ, Sun YZ, Zhang P (2014) Thermal optimization of an ultra-precision machine tool by the thermal displacement decomposition and counteraction method. Int J Adv Manuf Technol. doi:10.1007/s00170-014-6304-7

    Google Scholar 

  7. Venugopal R, Barash M (1986) Thermal effects on the accuracy of numerically controlled machine tools. Ann CIRP 35(1):255–258. doi:10.1016/S0007-8506(07)61882-4

    Article  Google Scholar 

  8. Veldhuis SC, Elbestawi MA (1995) A strategy for the compensation of errors in five-axis machining. Ann CIRP 44(1):373–378. doi:10.1016/S0007-8506(07)62345-2

    Article  Google Scholar 

  9. Yang AS, Chai SZ, Hsu HH, Kuo TC, Wu WT, Hsieh WH, Hwang YC (2013) FEM-based modeling to simulate thermal deformation process for high-speed ball screw drive systems. Appl Mech Mater 481:171–179. doi:10.4028/www.scientific.net/AMM.481.171

    Article  Google Scholar 

  10. Heisel U, Koscsák G, Stehle T (2006) Thermography-based investigation into thermally induced positioning errors of feed drives by example of a ball screw. Ann CIRP 55(1):423–426. doi:10.1016/S0007-8506(07)60450-8

    Article  Google Scholar 

  11. Ramesh R, Mannan MA, Poo AN (2002) Support vector machines model for classification of thermal error in machine tools. Int J Adv Manuf Technol 20(2):114–120. doi:10.1007/s001700200132

    Article  Google Scholar 

  12. Ramesh R, Mannan MA (2003) Thermal error measurement and modelling in machine tools. Part I influence of varying operating conditions. Int J Mach Tools Manuf 43(4):391–404. doi:10.1016/S0890-6955(02)00263-8

    Article  Google Scholar 

  13. Mayr J, Jedrzejewski J, Uhlmann E, Uhlmann E, Donmez MA, Knapp W, Hartig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher C, Wurz T, Wegener K (2012) Thermal issues in machine tools. Ann CIRP 61(2):771–791. doi:10.1016/j.cirp.2012.05.008

    Article  Google Scholar 

  14. Wu H, Zhang HT, Guo QJ, Guo QJ, Wang XS, Yang JG (2008) Thermal error optimization modeling and real-time compensation on a CNC turning center. J Mater Process Technol 207(1–3):172–179. doi:10.1016/j.jmatprotec.2007.12.067

    Google Scholar 

  15. Vyroubal J (2012) Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method. Precis Eng 36(1):121–127. doi:10.1016/j.precisioneng.2011.07.013

    Article  Google Scholar 

  16. Moriwaki T, Tangjitsitcharoen S, Shibasaka T (2006) Development of intelligent monitoring and optimization of cutting process for CNC turning. Int J Comput Integr Manuf 19(5):473–480. doi:10.1080/09511920500399177

    Article  Google Scholar 

  17. Lo CH, Yuan JX, Ni J (1999) Optimal temperature variable selection by grouping approach for thermal error modeling and compensation. Int J Mach Tools Manuf 39(9):1383–1396. doi:10.1016/S0890-6955(99)00009-7

    Article  Google Scholar 

  18. Wang HT, Wang LP, Li TM, Han J (2013) Thermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering method. Int J Adv Manuf Technol 69(1–4):121–126. doi:10.1007/s00170-013-4998-6

    Article  Google Scholar 

  19. Montgomery DC (2008) Design and analysis of experiments, 7th edn. John Wiley & Sons, New York

    Google Scholar 

  20. Narendra KS, Mukhopadhyay SM (1997) Adaptive control using neural networks and approximate models. IEEE Trans Neural Netw 8(3):475–485. doi:10.1109/72.572089

    Article  Google Scholar 

  21. Zhang Q, Benvniste A (1992) Wavelet networks. IEEE Trans Neural Netw 3(6):889–898. doi:10.1109/72.165591

    Article  Google Scholar 

  22. Bin GF, Gao JJ, Li XJ, Dhillon BS (2012) Early fault diagnosis of rotating machinery based on wavelet packets—empirical mode decomposition feature extraction and neural network. Mech Syst Signal Process 27:696–711. doi:10.1016/j.ymssp.2011.08.002

    Article  Google Scholar 

  23. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, Perth, Australia, November 26–December 1, pp 1942–1948. doi:10.1109/ICNN.1995.488968

  24. Ding C, He XF (2004) K-means clustering via principal component analysis. In Proceedings of international conference on machine learning (ICML 2004), Banff, Alberta, Canada, July 4–8, pp 225–232. doi:10.1145/1015330.1015408

  25. ANSYS, Inc (2005) ANSYS thermal analysis guide, release 10.0. ANSYS Inc, Canonsburg

  26. Xia JY, Hu YM, Wu B, Shi TL (2008) Numerical solution, simulation and testing of the thermal dynamic characteristics of ball-screws. Front Mech Eng China 3(1):28–36. doi:10.1007/s11465-008-0007-4

    Article  Google Scholar 

  27. Xia JY, Hu YM, Wu B (2009) Research on thermal dynamics characteristics and modeling approach of ball screw. Int J Adv Manuf Technol 43:421–430. doi:10.1007/s00170-008-1723-y

    Article  Google Scholar 

  28. Elman JL (1990) Finding structure in time. Cogn Sci 14(2):179–211. doi:10.1016/0364-0213(90)90002-E

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C., Wu, B. & Hu, Y. Temperature distribution and thermal error prediction of a CNC feed system under varying operating conditions. Int J Adv Manuf Technol 77, 1979–1992 (2015). https://doi.org/10.1007/s00170-014-6604-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6604-y

Keywords

Navigation