Skip to main content

Advertisement

Log in

An efficient genetic algorithm for setup time minimization in PCB assembly

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A central aspect of surface mount technology (SMT) systems is the assembly of printed circuit boards (PCBs) which requires the resolution of many optimization problems. One of these problems arises when assembling many types of PCBs on a single machine. In this case, the main goal becomes the minimization of the setup times. That is, the time required to modify the feeder rack in order to have all components needed by the next type of PCB to be assembled. Achieving such a minimization goal will provide the system with improved productivity and flexibility capabilities. In order to minimize the setup time, we propose a genetic algorithm that uses a group-based representation with a series of specialized genetic operators. A set of 90 instances is proposed as a test bed for the single machine many-types of PCB problem. The proposed algorithm accomplishes the best known result for a benchmark instance of the problem and outperforms, in terms of assembly time, a well known heuristic on the set of proposed instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crama Y, Spieksma AOF (1994) Production planning in automated manufacturing. Springer, Berlin

    Book  MATH  Google Scholar 

  2. Das S (1996) The measurement of flexibility in manufacturing systems. Int J Flex Manuf Syst 8:67–93

    Article  Google Scholar 

  3. ElMaraghy HA (2006) Flexible and reconfigurable manufacturing systems paradigms. Int J Flex Manuf Syst 17:261–276

    Article  MATH  Google Scholar 

  4. Lambert S, Abdulnor G, Drolet J, Cyr B (2006) Flexbility analysis of a surface mount technology electronic assembly plant: an integrated model using simulation. Int J Flex Manuf Syst 17:151–167

    Article  Google Scholar 

  5. Garcia-Najera A, Brizuela CA (2005) PCB assembly: an efficient genetic algorithm for slot assignment and component pick and place sequence problems. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1485–1491

  6. Bellman R (1991) Intelligent heuristic for fms scheduling using grouping. J Intell Manuf 2:387395

    Google Scholar 

  7. Smed J, Johnsson M, Puranen M, Leipälä T, Nevalainen O (1998) Job grouping in surface mounted component printing. Tech. Rep. 196. Turku Centre for Computer Science

  8. Ammons JC, Carlyle M, Crammer LL, DePuy G, Ellis K, McGinnis LF, Tovey CA, Xu H (1997) Component allocation to balance workload in printed circuit card assembly systems. IIE Transcations 26:265–275

    Google Scholar 

  9. Crama Y, Flippo OE, van de Klundert J, Spieksma FCR (1997) The assembly of printed circuit boards: a case with multiple machines and multiple board types. Eur J Oper Res 98(3):457–472

    Article  Google Scholar 

  10. Leon VJ, Peters BA (1998) A comparison of setup strategies for printed circuit board assembly. Comput Ind Eng 34(1):219–234

    Article  Google Scholar 

  11. Balakrishnan A, Vanderbeck F (1999) A tactical planning model for mixed-model electronics assembly operations. Oper Res 47(3):395–409

    Article  MATH  Google Scholar 

  12. Salonen K, Johnsson M, Smed J, Johtela T, Nevalainen O (2000) A comparison of group and minimum setup strategies in PCB assembly. In: Proceedings of Group Technology/Cellular Manufacturing World Symposium, vol. 1, pp 95–100

  13. Crama Y, van de Klundert J, Spieksma FCR (2002) Production planning problems in printed circuit boards assembly. Discret Appl Math 123(1-3):339–361

    Article  MATH  MathSciNet  Google Scholar 

  14. Narayanaswami R, Iyengar V (2004) Setup reduction in printed circuit board assembly by efficient sequencing. Int J Adv Manuf Technol 26(3):276–284

    Article  Google Scholar 

  15. Jeong IJ (2006) An entropy based group setup strategy for pcb assembly. In: 2006 International Conference on Computational Science and Its Applications. Springer, Berlin, pp 698–707

  16. Ashayeri J, Selen W (2007) A planning and scheduling model for onsertion in printed circuit board assembly. Eur J Oper Res 183(2):909–925

    Article  MATH  Google Scholar 

  17. Leu MC, Wong H, Ji Z (1993) Planning of component placement/insertion sequence and feeder setup in PCB assembly using genetic algorithm. Trans ASME 115:424–432

    Google Scholar 

  18. Ong N, Khoo LP (1999) Genetic algorithm approach in PCB assembly. Integr Manuf Syst 10(5):256–265

    Article  Google Scholar 

  19. Ho W, Ji P (2005) A genetic algorithm to optimise the component placement process in PCB assembly. Int J Adv Manuf Technol 26(11):1397–1401

    Article  Google Scholar 

  20. Godinho Filho M, Barco C, Tavares Neto R (2014) Using genetic algorithms to solve scheduling problems on flexible manufacturing systems (fms): a literature survey, classification and analysis. Flex Serv Manuf J 26(3):408–431. doi:10.1007/s10696-012-9143-6

    Article  Google Scholar 

  21. Rubin PA, Ragatz GL (1995) Scheduling in a sequence dependent setup environment with genetic search. Comput Oper Res 22(1):85–99. doi:10.1016/0305-0548(93)E0021-K. Genetic Algorithms

    Article  MATH  Google Scholar 

  22. Bigras LP, Gamache M, Savard G (2008) The time-dependent traveling salesman problem and single machine scheduling problems with sequence dependent setup times. Discret Optim 5(4):685–699. doi:10.1016/j.disopt.2008.04.001. http://www.sciencedirect.com/science/article/pii/S1572528608000339

    Article  MATH  MathSciNet  Google Scholar 

  23. Tan K, Narasimhan R (1997) Minimizing tardiness on a single processor with sequencedependent setup times: a simulated annealing approach. Omega 25(6):619–634. doi:10.1016/S0305-0483(97)00024-8

    Article  Google Scholar 

  24. Frana PM, Mendes A, Moscato P (2001) A memetic algorithm for the total tardiness single machine scheduling problem. Eur J Oper Res 132(1):224–242. doi:10.1016/S0377-2217(00)00140-5

    Article  Google Scholar 

  25. Gupta SR, Smith JS (2006) Algorithms for single machine total tardiness scheduling with sequence dependent setups. Eur J Oper Res 175(2):722–739. doi:10.1016/j.ejor.2005.05.018

    Article  MATH  Google Scholar 

  26. Liao CJ, Juan HC (2007) An ant colony optimization for single-machine tardiness scheduling with sequence-dependent setups. Comput Oper Res 34(7):1899–1909. doi:10.1016/j.cor.2005.07.020

    Article  MATH  Google Scholar 

  27. Gagne C, Price W, Gravel M (2002) Comparing an aco algorithm with other heuristics for the single machine scheduling problem with sequence-dependent setups. J Oper Res Soc 53:895–906

    Article  MATH  Google Scholar 

  28. Gagne C, Price W, Gravel M (2005) Using metaheuristic compromise programming for the solution of multiple objective scheduling problems. J Oper Res Soc 56:687–698

    Article  MATH  Google Scholar 

  29. Armentano VA, Mazzini R (2000) A genetic algorithm for scheduling on a single machine with set-up times and due dates. Prod Plan Control 11(7):713–720. doi:10.1080/095372800432188

    Article  Google Scholar 

  30. Siud A, Gravel M, Gagne C New crossover operator for the single machine scheduling problem with sequencedependent setup times. In: Proceedings of GEM09 The 2009 International Conference on Genetic and Evolutionary Methods, pp 79–84

  31. Siud A, Gravel M, Gagne C (2010) Constraint-based scheduling in a genetic algorithm for the single machine scheduling problem with sequence-dependent setup times. In: Proceedings of the IEEE CEC International Conference on Evolutionary Computation, pp 137–145

  32. van Laarhoven PJM, Zijm WHM (1993) Production preparation and numerical control in PCB assembly. Int J Flex Manuf Syst 5(3):187–207

    Article  Google Scholar 

  33. Salonen K, Smed J, Johnsson M, Nevalainen O (2003) Job grouping with minimum setup in PCB assembly. In: Proceedings of Group Technology/Cellular Manufacturing World Symposium, vol. 1, pp 221–225

  34. Garey MR, Johnson DS (1999) Computers and intractability: A guide to the theory of NP-completeness. Freeman, San Francisco

    Google Scholar 

  35. Papadimitriou CH, Steiglitz K (1998) Combinatorial optimization: Algorithms and complexity. Dover, New York

    MATH  Google Scholar 

  36. Maimon O, Braha D (1998) A genetic algorithm approach to scheduling pcbs on a single machine. Int J Prod Res 36(3):761–784

    Article  MATH  Google Scholar 

  37. Hardas CS, Doolen TL, Jensen DH (2008) Development of a genetic algorithm for component placement sequence optimization in printed circuit board assembly. Comput Ind Eng 55(1):165–182

    Article  Google Scholar 

  38. Ho W, Ji P (2009) An integrated scheduling problem of pcb components on sequential pick-and-place machines: mathematical models and heuristic solutions. Expert Syst Appl 36(3):7002–7010

    Article  Google Scholar 

  39. Neammanee P, Reodecha M (2009) A memetic algorithmbased heuristic for a scheduling problem in printed circuit board assembly. Comput Ind Eng 56(1):294–305

    Article  Google Scholar 

  40. Dikos A, Nelson PC, Tirpak TM, Wang W (1997) Optimization of high-mix printed circuit card assembly using genetic algorithms. Ann Oper Res 75(1):303–324

    Article  MATH  Google Scholar 

  41. Wang W, Nelson PC, Tirpak TM (1999) Optimization of high-speed multi-station SMT placement machines using evolutionary algorithms. IEEE Trans Electron Packag Manuf 22(2):137–146

    Article  Google Scholar 

  42. Ho W, Ji P (2003) Component scheduling for chip shooter machines: a hybrid genetic algorithm approach. Comput Oper Res 30(14):2175–2189

    Article  MATH  Google Scholar 

  43. Ho W, Ji P (2006) A genetic algorithm approach to optimising component placement and retrieval sequence for chip shooter machines. Int J Adv Manuf Technol 28:556–560

    Article  Google Scholar 

  44. Chyu CC, Chang WS (2008) A genetic-based algorithm for the operational sequence of a high speed chip placement machine. Int J Adv Manuf Technol 36(9):918–926

    Article  Google Scholar 

  45. Lee W, Lee S, Lee B, Lee Y (2000) A genetic optimization approach to operation of a multi-head surface mounting machine. IEICE Trans Fundam Electron Commun Comput Sci E83-A(9):1748–1756

    Google Scholar 

  46. Jeevan K, Parthiban A, Seetharamu KN, Azid IA, Quadir GA (2002) Optimization of PCB component placement using genetic algorithms. J Electron Manuf 11(1):69–79

    Article  Google Scholar 

  47. Gyorfi JS, haur Wu C (2008) An efficient algorithm for placement sequence and feeder assignment problems with multiple placement-nozzles and independent link evaluation. IEEE Trans Syst Man Cybern : Part A 38(2):437–442

    Article  Google Scholar 

  48. Falkenauer E (1996) A hybrid grouping genetic algorithm for bin packing. J Heuristics 2:5–30

    Article  Google Scholar 

  49. Gen M, Cheng R (2000) Genetic algorithms and engineering optimization. Wiley, New York

    Google Scholar 

  50. Salonen K, Smed J, Johnsson M, Nevalainen O (2006) Grouping and sequencing pcb assembly jobs with minimum feeder setups. Robot Comput Integr Manuf 22(4):297–305

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Brizuela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Nájera, A., Brizuela, C.A. & Martínez-Pérez, I.M. An efficient genetic algorithm for setup time minimization in PCB assembly. Int J Adv Manuf Technol 77, 973–989 (2015). https://doi.org/10.1007/s00170-014-6510-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6510-3

Keywords

Navigation