Skip to main content
Log in

A hybrid monitoring-simulation system for contour error prediction on complex surfaces manufacturing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Recent studies show the entire CNC virtualization chain as a potential strategy to predict the contour error, but since the CNC manufacturers do not disclose information about the trajectories’ generation, it becomes difficult to replicate contouring error simulation on commercial machines. In this paper, a hybrid approach allows simplifying the monitoring and simulation tasks by providing a less intrusive strategy to interface commercial machine tools. The developed system takes advantage from the positioning set points generated by the machine CNC and uses them as input data to simulate the tool-center point (TCP) movements and to preview the expected contour error, considering also the behavior of the control system and feed drives. In summary, the proposed approach adds on previous virtual CNC developments since the monitored CNC set points are fed directly into the simulation model. The use of the developed hybrid system in commercial machine tools shows a maximum deviation of 3 μm between the observed and the simulated contour error, showing therefore its adequacy to preview the contour error of commercial machine tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lutz H, Wendet W (2010) Taschenbuch der Regelungstechnik: mit MATLAB und Simulink. Frankfurt am Main: Verlag Harri Deutsch

  2. Weck M, Brecher C (2006) Werkzeugmaschinen 3—Mechatronische Systeme, Voschubantriebe, Prozessdiagnose. Springer, Berlin

    Google Scholar 

  3. Hoffmann F (2008) “Optimierung der dynamischen Bahngenauigkeit von Werkzeugmaschinen mit der Mehrkörpersimulation,” Tese (Doutorado) - RWTH Aachen

  4. Kurt M, Bagci E (2011) Feedrate optimisation/scheduling on sculptured surface machining: a comprehensive review, applications and future directions. Int J Adv Manuf Technol 55(9–12):1037–1067

    Article  Google Scholar 

  5. Hoffmann F, Brecher C (2005) Simulation von Verfahroperationen. Werkstattstechnik 95:506–512

    Google Scholar 

  6. Ramesh R, Mannan MA, Poo AN (2005) Tracking and contour error control in CNC servo systems. Int J Mach Tools Manuf 45(3):301–326

    Article  Google Scholar 

  7. Weck M, Brecher C (2006) Werkzeugmaschinen 4–Automatisierung Von Maschinen und Anlagen. Springer, Berlin

    Google Scholar 

  8. Abdul Kadir A, Xu X, Hämmerle E (2011) Virtual machine tools and virtual machining—a technological review. Robot Comput Integr Manuf 27(3):494–508

    Article  Google Scholar 

  9. Yeung C, Altintas Y, Erkorkmaz K (2006) Virtual CNC system. Part I. System architecture. Int J Mach Tools Manuf 46(10):1107–1123

    Article  Google Scholar 

  10. Erkorkmaz K, Yeung C-H, Altintas Y (2006) Virtual CNC system. Part II. High speed contouring application. Int J Mach Tools Manuf 46(10):1124–1138

    Article  Google Scholar 

  11. Altintas Y, Brecher C, Weck M, Witt S (2005) Virtual machine tool. CIRP Ann Manuf Technol 54(2):115–138

    Article  Google Scholar 

  12. Erkorkmaz K, Altintas Y, Yeung C-H (2006) Virtual computer numerical control system. CIRP Ann Manuf Technol 55(1):399–402

    Article  Google Scholar 

  13. Röck S (2011) Hardware in the loop simulation of production systems dynamics. Prod Eng 5(3):329–337

    Article  Google Scholar 

  14. Zirn O, Weikert S (2006) Modellbildung und Simulation hochdynamischer Fertigungssysteme. Springer, Berlin

    Google Scholar 

  15. Pritschow G, Röck S (2004) ‘Hardware in the loop’ simulation of machine tools. CIRP Ann Manuf Technol 53(1):295–298

    Article  Google Scholar 

  16. wbk Institut für Produktionstechnik (2006) Integration von CATechniken zur ganzheitlichen Simulation und Optimierung von Fertigungseinrichtungen vom CAD bis hin zur Hardware-in-the- Loop-Simulation, Abschlussbericht des Verbundforschungsprojekts “SimCAT”. [Online]. Available: http://simcat.org. Accessed 19 Jun 2012

  17. Harrison WS, Tilbury DM, Yuan C (2012) From hardware-in-the-loop to hybrid process simulation: an ontology for the implementation phase of a manufacturing system. IEEE Trans Autom Sci Eng 9(1):96–109

    Google Scholar 

  18. Svensson B, Danielsson F, Lennartson B (2012) Time-synchronised hardware-in-the-loop simulation—applied to sheet-metal press line optimisation. Control Eng Pract 20(8):792–804

    Article  Google Scholar 

  19. Oliveira JFG, Ferraz Júnior F, Coelho RT, Silva EJ (2008) Architecture for machining process and production monitoring based in open computer numerical control. Proc Inst Mech Eng B J Eng Manuf 222(12):1605–1612

    Article  Google Scholar 

  20. Pritschow G et al (2001) Open controller architecture—past, present and future. CIRP Ann Manuf Technol 50(2):463–470

    Article  Google Scholar 

  21. Teti R, Jemielniak K, O’Donnell G, Dornfeld D (2010) Advanced monitoring of machining operations. CIRP Ann Manuf Technol 59(2):717–739

    Article  Google Scholar 

  22. Pothen M, Minoufekr M, Huwer T, Glasmacher L (2011) NC-Datenanalyse und -optimierung. Werkstattstechnik 101:724–729

    Google Scholar 

  23. Broos A, Schermann T, Schmitz E-U (2006) Neue Prozessketten für die Simulation, Werkstattstechnik 96(1):24–29

  24. ISG Industrielle Steuerungstechnik GmbH (2012) “ISG-virtuos—a powerful tool for simulation and visualisation,”. [Online]. Available: www.isg-stuttgart.de. Accessed 04 Jun 2012

  25. Beudaert X, Lavernhe S, Tournier C (2012) Feedrate interpolation with axis jerk constraints on 5-axis NURBS and G1 tool path. Int J Mach Tools Manuf 57:73–82

    Article  Google Scholar 

  26. Siemens AG (1997) OEM package MMC Release 4 System installation

  27. Altintas Y (2000) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, New York

    Google Scholar 

  28. Uhlmann E, Abackerli AJ, Schützer K, Lepikson HA, Helleno AL, Papa MCO, Conte EG, Mewis J (2014) Simulation and analysis of error impact on freeform surface milling. The International Journal of Advanced Manufacturing Technology 70(1–4):607–620. doi:10.1007/s00170-013-5280-7

  29. MWA GmbH (2012) “LPZ Braureihe: Kompetenz in Dinamik,”. [Online]. Available: http://www.mwa-wzm.de/produkte/lpz/. Accessed 26 Nov 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Gustavo del Conte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Conte, E.G., Schützer, K. & Abackerli, A.J. A hybrid monitoring-simulation system for contour error prediction on complex surfaces manufacturing. Int J Adv Manuf Technol 77, 321–329 (2015). https://doi.org/10.1007/s00170-014-6465-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6465-4

Keywords

Navigation