Skip to main content
Log in

Estimating multivariate linear profiles change point with a monotonic change in the mean of response variables

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, a maximum likelihood estimator (MLE) is developed to estimate change point when monotonic change occurs in the mean of response variables in multivariate linear profiles in Phase II. Performance of the proposed estimator is compared to the performance of step change and linear drift estimators under different shift types. To conduct comparisons, accuracy and precision of the estimators are considered as performance measures. Simulation results show that the average change point estimate of the proposed estimator is less biased than the one for the step and drift estimators in small shifts, because \( {\overline{\widehat{\tau}}}_{\mathrm{monotonic}} \) is closer to the actual change point of 25 in small shifts. Also, the precision of the proposed estimator is approximately better than that of the step and drift estimators, because its precision values are higher. Hence, the proposed estimator has better performance in terms of both accuracy and precision in small shifts under any kinds of increasing changes. In single step and linear drift changes when the magnitude of shifts increases, the accuracy and precision of their corresponding estimators become better than the accuracy and precision of the proposed estimator. However, the proposed estimator has an advantage that it does not require assumptions about the change type, and its only assumption is that the mean of the response variables changes in an increasing manner. Additional evaluations on the effect of smoothing constant show that with smaller values of the smoothing constant, the proposed change point estimator has less biased estimates and smaller values of mean square error in small shifts rather than the step and drift estimators, leading to a better performance. Also, the larger values of smoothing constant lead to the better performance of the monotonic estimator in large shifts. Finally, the application of the proposed estimator is shown through a real case in the calibration process in the automotive industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Page ES (1954) Continuous inspection schemes. Biometrika 41(1–2):100–115

    Article  MATH  MathSciNet  Google Scholar 

  2. Nishina K (1992) A comparison of control charts from the viewpoint of change point estimation. Qual Reliab Eng Int 8(6):537–541

    Article  Google Scholar 

  3. Pignatiello JJ Jr, Samuel TR (2001) Estimation of the change point of a normal process mean in SPC applications. J Qual Technol 33(1):82–95

    Google Scholar 

  4. Samuel TR, Pignatiello JJ Jr, Calvin JA (1998) Identifying the time of a step change with \( \overline{X} \) control charts. Qual Eng 10(3):521–527

    Article  Google Scholar 

  5. Samuel TR, Pignatiello JJ Jr, Calvin JA (1998) Identifying the time of a step change in a normal process variance. Qual Eng 10(3):529–538

    Article  Google Scholar 

  6. Noorosana R, Saghaei A, Paynabar K, Abdi S (2009) Identifying the period of a step change in high-yield processes. Qual Reliab Eng Int 25(7):875–883

    Article  Google Scholar 

  7. Perry MB, Pignatiello JJ Jr (2006) Estimation of the change point of a normal process mean with a linear trend disturbance in SPC. Qual Technol Quant Manag 3(3):325–334

    MathSciNet  Google Scholar 

  8. Perry MB, Pignatiello JJ Jr, Simpson JR (2006) Estimating the change point of a poisson rate parameter with a linear trend disturbance. Qual Reliab Eng Int 22(4):371–384

    Article  Google Scholar 

  9. Perry MB, Pignatiello JJ Jr, Simpson JR (2007) Estimating the change point of the process fraction non-conforming with a monotonic change disturbance in SPC. Qual Reliab Eng Int 23(3):327–339

    Article  Google Scholar 

  10. Noorossana R, Shadman A (2009) Estimating the change point of a normal process mean with a monotonic change. Qual Reliab Eng Int 25(1):79–90

    Article  Google Scholar 

  11. Ghazanfari M, Alaeddini A, Niaki STA, Aryanezhad MB (2008) A clustering approach to identify the time of a step change in shewhart control charts. Qual Reliab Eng Int 24(7):765–778

    Article  Google Scholar 

  12. Alaeddini A, Ghazanfari M, Aminnayeri M (2009) A hybrid fuzzy statistical clustering approach for estimating the time of changes in fixed and variable sampling control charts. Inf Sci 179(11):1769–1784

    Article  Google Scholar 

  13. Ahmadzadeh F (2009) Change point detection with multivariate control charts by artificial neural network. Int J Adv Manuf Technol. doi:10.1007/s00170-009-2193-6

    MATH  Google Scholar 

  14. Atashgar K, Noorossana R (2011) An integrating approach to root cause analysis of a bivariate mean vector with a linear trend disturbance. Int J Adv Manuf Technol 52(1–4):407–420

    Article  Google Scholar 

  15. Amiri A, Allahyari S (2012) Change point estimation methods for control chart postsignal diagnostics: a literature review. Qual Reliab Eng Int 28(7):673–685

    Article  Google Scholar 

  16. Kang L, Albin SL (2000) On-line monitoring when the process yields a linear profile. J Qual Technol 32(4):418–426

    Google Scholar 

  17. Mahmoud MA, Woodall WH (2004) Phase I analysis of linear profiles with calibration applications. Technometrics 46(4):380–391

    Article  MathSciNet  Google Scholar 

  18. Mahmoud MA, Parker PA, Hawkins MD, Woodall WH (2007) A change point method for linear profile data. Qual Reliab Eng Int 23(2):247–268

    Article  Google Scholar 

  19. Yeh A, Zerehsaz Y (2013) Phase I control of simple linear profiles with individual observations. Qual Reliab Eng Int 29(6):829–840

    Article  Google Scholar 

  20. Kim K, Mahmoud MA, Woodall WH (2003) On the monitoring of linear profiles. J Qual Technol 35(3):317–328

    Google Scholar 

  21. Gupta S, Montgomery DC, Woodall WH (2006) Performance evaluation of two methods for online monitoring of linear calibration profile. Int J Prod Res 44(10):1927–1942

    Article  Google Scholar 

  22. Zou C, Zhang Y, Wang Z (2006) Control chart based on change-point model for monitoring linear profiles. IIE Trans 38(12):1093–1110

    Article  MathSciNet  Google Scholar 

  23. Zou C, Zhou C, Wang Z, Tsung F (2007) A self-starting control charts for linear profiles. J Qual Technol 39(4):364–375

    Google Scholar 

  24. Zhang J, Li Z, Wang Z (2009) Control chart based on likelihood ratio for monitoring linear profiles. Comput Stat Data Anal 53(4):1440–1448

    Article  MATH  MathSciNet  Google Scholar 

  25. Mahmoud MA, Morgan JP, Woodall WH (2010) The monitoring of simple linear regression profiles with two observations per sample. J Appl Stat 37(8):1249–1263

    Article  MathSciNet  Google Scholar 

  26. Li Z, Wang Z (2010) An exponentially weighted moving average scheme with variable sampling intervals for monitoring linear profiles. Comput Ind Eng 59(4):630–637

    Article  Google Scholar 

  27. Zhu J, Lin DKJ (2010) Monitoring the slopes of linear profiles. Qual Eng 22(1):1–12

    Article  Google Scholar 

  28. Hosseinifard SZ, Abdollahian M, Zeephongsekul P (2011) Application of artificial neural networks in linear profile monitoring. Expert Syst Appl 38(5):4920–4928

    Article  Google Scholar 

  29. Noorossana R, Ayoubi M (2012) Profile monitoring using nonparametric bootstrap T2 control chart. Commun Stat-Simul Comput 41(3):302–315

    Article  MATH  MathSciNet  Google Scholar 

  30. Zou C, Tsung F, Wang Z (2007) Monitoring general linear profiles using multivariate exponentially weighted moving average schemes. Technometrics 49(4):395–408

    Article  MathSciNet  Google Scholar 

  31. Mahmoud MA (2008) Phase I analysis of multiple linear regression profiles. Commun Stat-Simul Comput 37(10):2106–2130

    Article  MATH  Google Scholar 

  32. Kazemzadeh RB, Noorossana R, Amiri A (2008) Phase I monitoring of polynomial profiles. Commun Stat Theory Methods 37(10):1671–1686

    Article  MATH  MathSciNet  Google Scholar 

  33. Amiri A, Jensen WA, Kazemzadeh RB (2010) A case study on monitoring polynomial profiles in the automotive industry. Qual Reliab Eng Int 26(5):509–520

    Article  Google Scholar 

  34. Noorossana R, Eyvazian M, Amiri A, Mahmoud MA (2010) Statistical monitoring of multivariate multiple linear regression profiles in Phase I with calibration application. Qual Reliab Eng Int 26(3):291–303

    Article  Google Scholar 

  35. Eyvazian M, Noorossana R, Saghaei A, Amiri A (2011) Phase II monitoring of multivariate multiple linear regression profiles. Qual Reliab Eng Int 27(3):281–296

    Article  Google Scholar 

  36. Zou C, Ning X, Tsung F (2012) LASSO-based multivariate linear profile monitoring. Ann Oper Res 192(1):3–19

    Article  MATH  MathSciNet  Google Scholar 

  37. Best MJ, Chakravarti N (1990) Active set algorithms for isotonic regression; a unifying framework. Math Program 47(1–3):425–439

    Article  MATH  MathSciNet  Google Scholar 

  38. Kazemzadeh RB, Noorossana R, Ayoubi M (2013) Change point estimation of multivariate linear profiles with existence of linear disturbances. Commun Stat Simul Comput. doi:10.1080/03610918.2013.824093

    Google Scholar 

  39. Lucas JM, Saccucci MS (1990) Exponentially weighted moving average control scheme: properties and enhancements. Technometrics 32(1):1–12

    Article  MathSciNet  Google Scholar 

  40. Prabhu SS, Runger GC (1997) Designing a multivariate EWMA control chart. J Qual Technol 29(1):8–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Kazemzadeh.

Appendices

Appendix 1: Derivation of the linear drift estimator

The logarithm of likelihood function for drift estimator is as follows (see Kazemzadeh et al. [38] for more details):

$$ \begin{array}{l} Ln\left( L\left(\tau, \mathbf{K}\Big|\mathbf{Y},\mathbf{X}\right)\right)= U-\frac{1}{2}{\displaystyle \sum_{j=1}^{\tau} tr\left[\left({\mathbf{Y}}_{\mathrm{j}}-\mathbf{XB}\right){\displaystyle {\sum}^{-1}{\left({\mathbf{Y}}_{\mathrm{j}}-\mathbf{XB}\right)}^{\mathrm{T}}}\right]}\hfill \\ {}-\frac{1}{2}{\displaystyle \sum_{j=\tau +1}^T tr\left[\left[{\mathbf{Y}}_{\mathrm{j}}-\mathbf{XB}-\left( j-\tau \right)\mathbf{XK}\right]{\displaystyle {\sum}^{-1}{\left[{\mathbf{Y}}_{\mathrm{j}}-\mathbf{XB}-\left( j-\tau \right)\mathbf{XK}\right]}^{\mathrm{T}}}\right]}\hfill \end{array} $$
(23)

where U is a constant value and tr[W] is the trace of the matrix of W. Taking a derivative of the aforementioned function with respect to the matrix of XK to estimate the slope of the changes and solving for XK leads to

$$ \frac{\partial Ln\left( L\left(\tau, \mathbf{K}\Big|\mathbf{Y},\mathbf{X}\right)\right)}{\partial \mathbf{XK}}={\displaystyle \sum_{j=\tau +1}^T\left[\left( j-\tau \right)\left({\mathbf{Y}}_j-\mathbf{XB}-\left( j-\tau \right)\mathbf{XK}\right){{\displaystyle \sum}}^{-1}\right]} $$
(24)
$$ \frac{\partial Ln\left( L\left(\tau, \mathbf{K}\Big|\mathbf{Y},\mathbf{X}\right)\right)}{\partial \mathbf{XK}}=0,\kern0.5em so\kern0.5em \widehat{\mathbf{XK}}=\frac{\left[{\displaystyle {\sum}_{j=\tau +1}^T}\left( j-\tau \right)\left({\mathbf{Y}}_j-\mathbf{XB}\right)\right]}{{\displaystyle {\sum}_{j=\tau +1}^T}{\left( j-\tau \right)}^2} $$
(25)

Finally, the change point estimator is as follows:

$$ {\widehat{\tau}}_{\boldsymbol{LD}}=\underset{0\le t\le T-1}{ \arg \kern0.5em \max}\left\{ - \frac{1}{2}{\displaystyle \sum_{j=1}^t} tr\left[\left({\mathbf{Y}}_j-\mathbf{XB}\right){{\displaystyle \sum}}^{-1}{\left({\mathbf{Y}}_j-\mathbf{XB}\right)}^{\mathrm{T}}\right]-\frac{1}{2}{\displaystyle \sum_{j= t+1}^T} tr\left[\left[{\mathbf{Y}}_j-\mathbf{XB}-\left( j-\tau \right)\hat{\mathbf{XK}}\right]{{\displaystyle \sum}}^{-1}{\left[{\mathbf{Y}}_j-\mathbf{XB}-\left( j-\tau \right)\widehat{\mathbf{XK}}\right]}^{\mathrm{T}}\right]\right\} $$
(26)

For the special cases of multivariate linear profiles, i.e., multiple and simple linear profiles, the only difference is that in the above equations, matrixes of Y j , B, and K reduce to vectors of y j , β, and k, respectively.

Appendix 2: Derivation of the step change estimator

The logarithm of the likelihood function with the assumption of step change yields

$$ Ln\left( L\left(\tau, {\mathbf{B}}_1\Big|\mathbf{Y},\mathbf{X}\right)\right)= U-\frac{1}{2}{\displaystyle \sum_{j=1}^{\tau}} tr\left[\left({\mathbf{Y}}_j-\mathbf{XB}\right){\boldsymbol{\Sigma}}^{-1}{\left({\mathbf{Y}}_j-\mathbf{XB}\right)}^{\mathrm{T}}\right]-\frac{1}{2}{\displaystyle \sum_{j=\tau +1}^T} tr\left[\left[{\mathbf{Y}}_j-{\left(\mathbf{XB}\right)}_1\right]{\boldsymbol{\Sigma}}^{-1}{\left[{\mathbf{Y}}_j-{\left(\mathbf{XB}\right)}_1\right]}^{\mathrm{T}}\right] $$
(27)

U is constant, so the derivative of the logarithm of the likelihood function with respect to (XB)1 is

$$ \frac{\partial Ln\left( L\left(\tau, {\mathbf{B}}_1\Big|\mathbf{Y},\mathbf{X}\right)\right)}{\partial {\left(\mathbf{XB}\right)}_1}={\displaystyle \sum_{j=\tau +1}^T}\left[\left({\mathbf{Y}}_j-{\left(\mathbf{XB}\right)}_1\right){\boldsymbol{\Sigma}}^{-1}\right] $$
(28)

Also, the maximum likelihood estimator of (XB)1 is

$$ {\left(\widehat{\mathbf{XB}}\right)}_1=\frac{\left[{\displaystyle {\sum}_{j=\tau +1}^T}{\mathbf{Y}}_j\right]}{\left( T-\tau \right)} $$
(29)
$$ {\widehat{\tau}}_{\boldsymbol{SC}}= \arg \underset{0\le t\le T-1}{ \max}\left\{ - \frac{1}{2}{\displaystyle \sum_{j=1}^t} tr\left[\left({\mathbf{Y}}_j-\mathbf{XB}\right){{\displaystyle \sum}}^{-1}{\left({\mathbf{Y}}_j-\mathbf{XB}\right)}^{\mathrm{T}}\right]-\frac{1}{2}{\displaystyle \sum_{j= t+1}^T} tr\left[\left[{\mathbf{Y}}_j-{\left(\widehat{\mathbf{XB}}\right)}_1\right]{{\displaystyle \sum}}^{-1}{\left[{\mathbf{Y}}_j-{\left(\widehat{\mathbf{XB}}\right)}_1\right]}^{\mathrm{T}}\right]\right\} $$
(30)

For multiple and simple linear profiles, the matrixes of Y j and B reduce to vectors of y j and β, respectively.

Appendix 3: Computations of the proposed change point estimators

Table 8 Computations of change point estimators for torqometer calibration case study at Irankhodro Corporation. The first out-of-control sample occurs on the 26th sample (τ 1 = 25)

Appendix 4

Table 9 Data of torqometer calibration case study at Irankhodro Corporation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayoubi, M., Kazemzadeh, R.B. & Noorossana, R. Estimating multivariate linear profiles change point with a monotonic change in the mean of response variables. Int J Adv Manuf Technol 75, 1537–1556 (2014). https://doi.org/10.1007/s00170-014-6208-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6208-6

Keywords

Navigation