Skip to main content
Log in

Micromachining of stainless steel–polymer composites using nanosecond and femtosecond UV lasers

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The fabrication of microstructures using high-strength anti-corrosive materials is a topic of intense investigation. In this work, we investigate micromachining processes for fabricating stainless steel–polymer composites using nanosecond (excimer) and femtosecond (Ti:sapphire) lasers at ultraviolet wavelengths. The laser ablation mechanisms were analyzed as a function of the laser source and process parameters. Microdrilling and grooving of the composite were used to evaluate the process performance. The ns laser processing mechanism at relatively low fluences relied mainly on ablation with photothermal/photochemical decomposition of the binder resin without permanently affecting the stainless steel particles. On the other hand, ns laser pulse irradiation at high fluences induced significant melting and agglomeration of the particles, which lowered the ablation rate and were detrimental to the micromachining performance. During the high-intensity femtosecond laser processing (>TW/cm2), the laser pulse directly ablated the particles and the binder without inducing significant thermal effects. Microstructures 10 μm in size (average particle size) and with an aspect ratio of ~10 were fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. German RM (1993) Powder Metall Int 25:165

    Google Scholar 

  2. Loh NH, Tor SB, Khor KA (2001) J Mater Process Tech 108:398

    Article  Google Scholar 

  3. Liu ZY, Loh NH, Tor SB, Khor KA, Murakoshi Y, Maeda R, Shimizu T (2002) J Mater Process Tech 127:165

    Article  MATH  Google Scholar 

  4. Cai LX, German RM (1995) Int J Powder Metall 31:257

    Google Scholar 

  5. Fu G, Tor S, Loh N, Tay B, Hardt DE (2007) J Micromech Microeng 17:1803

    Article  Google Scholar 

  6. Tay B, Loh NH, Tor SB, Ng FL, Fu G, Lu XH (2009) Powder Technol 188:179

    Article  Google Scholar 

  7. Zauner R (2006) Microelectron Eng 83:1442

    Article  Google Scholar 

  8. Hsu KC, Lin CC, Lo GM (1994) Powder Metall 37:272

    Article  Google Scholar 

  9. Barreiros FM, Vieira MT (2006) Ceram Int 32:297

    Article  Google Scholar 

  10. Zhu BJ, Qu XH, Tao Y, Xiao PG, Qin ML (2002) Rare Metal Mat Eng 31:232

    Google Scholar 

  11. Urval R, Lee S, Atre SV, Park SJ, German RM (2010) Powder Metall 53:71

    Article  Google Scholar 

  12. Yu PC, Li QF, Fuh JYH, Li T, Ho PW (2009) Microsyst Technol 15:401

    Article  Google Scholar 

  13. Ahn S, Park SJ, Lee S, Atre SV, German RM (2009) Powder Technol 193:162

    Article  Google Scholar 

  14. Meng JH, Loh NH, Fu G, Tor SB, Tay BY (2010) J Alloy Compd 496:293

    Article  Google Scholar 

  15. Liu L, Loh NH, Tay BY, Tor SB (2011) Powder Technol 206:246

    Article  Google Scholar 

  16. Piotter V, Plewa K, Mueller T, Ruh A, Vorster E, Ritzhaupt-Kleissl HJ, Hausselt J (2010) Key Eng Mat 447–448:351

    Article  Google Scholar 

  17. Anon, IBM technical disclosure bulletin 28, 1216 (1985).

  18. Imen K, Allen SD (1999) IEEE Trans Adv Pack 22:620

    Article  Google Scholar 

  19. Guo D, Cai K, Huang Y, Li LT (2003) Appl Phys Mater 76:1121

    Article  Google Scholar 

  20. Chen J, Yue C, Zhang Y, Wang X, Zuo T (2004) Proc SPIE - Intl Soc Opt Eng 5641:205

    Google Scholar 

  21. Sola D, Gurauskis J, Pena JI, Orera VM (2009) Mater Res Bull 44:1910

    Article  Google Scholar 

  22. Nowak K, Baker H, Hall D (2011) Appl Phys Mater 103:1033

    Article  Google Scholar 

  23. Slocombe A, Li L (2000) Appl Surf Sci 154:617

    Article  Google Scholar 

  24. Slocombe A, Taufik A, Li L (2000) Appl Surf Sci 168:17

    Article  Google Scholar 

  25. Knowles MRH, Rutterford G, Karnakis D, Ferguson A (2007) Int J Adv Manuf Tech 33:95

    Article  Google Scholar 

  26. Fahler S, Krebs HU (1996) Appl Surf Sci 96–8:61

    Article  Google Scholar 

  27. Nowak KM, Baker HJ, Hall DR (2006) Appl Phys Mater 84:267

    Article  Google Scholar 

  28. Bäuerle D (2000) Laser processing and chemistry, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  29. Küper S, Stuke M (1987) Appl Phys B Photophys Laser Chem 44:199

    Article  Google Scholar 

  30. Srinivasan R, Braren B, Casey KG (1990) J Appl Phys 68:1842

    Article  Google Scholar 

  31. Sutcliffe E, Srinivasan R (1986) J Appl Phys 60:3315

    Article  Google Scholar 

  32. Chang T-C, Molian PA (1999) J Manuf Proc 1:1

    Article  Google Scholar 

  33. Stoian R, Rosenfeld A, Ashkenasi D, Hertel IV, Bulgakova NM, Campbell EEB (2002) Phys Rev Lett 88:976031

    Article  Google Scholar 

  34. Lee AJ, Dawes JM, Withford MJ (2008) J Laser Appl 20:154

    Article  Google Scholar 

  35. Wynne AE, Stuart BC (2003) Appl Phys Mater 76:373

    Article  Google Scholar 

  36. Zhu S, Lu YF, Hong MH (2001) Appl Phys Lett 79:1396

    Article  Google Scholar 

  37. Kang HW, Lee H, Welch AJ (2008) J Appl Phys 103:083101

    Article  Google Scholar 

  38. Okubo K, Tanaka S, Ito H (2010) Microsyst Technol 16:2037

    Article  Google Scholar 

  39. Weck A, Crawford THR, Wilkinson DS, Haugen HK, Preston JS (2008) Appl Phys Mater 90:537

    Article  Google Scholar 

  40. Kawanishi S, Shimizu Y, Sugimoto S, Suzuki N (1991) Polymer 32:979

    Article  Google Scholar 

  41. Aboulkas A, El Harfi K, El Bouadili A, Chanâa M, Mokhlisse A (2007) J Therm Anal Calorim 89:203

    Article  Google Scholar 

  42. Lide DR (2003) Handbook of chemistry and physics, 84th edn. CRC Press, Boca Raton

    Google Scholar 

  43. Philipp HR, Cole HS, Liu YS, Sitnik TA (1986) Appl Phys Lett 48:192

    Article  Google Scholar 

  44. Cho JW, Woo KS, Chun BC, Park JS (2001) Eur Polym J 37:1227

    Article  Google Scholar 

  45. Grant RH, Heisler GM, Gao W, Jenks M (2003) Agr Forest Meteorol 120:127

    Article  Google Scholar 

  46. Hirschausen D, Kane DM (2002) J Appl Phys 92:4201

    Article  Google Scholar 

  47. Pouli P, Melessanaki K, Giakoumaki A, Argyropoulos V, Anglos D (2005) Spectrochim Acta B 60:1163

    Article  Google Scholar 

  48. Jyumonji M, Sugioka K, Takai H, Tashiro H, Toyoda K (1995) Appl Phys Mater 60:41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsik Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, D., Seo, C., Park, T. et al. Micromachining of stainless steel–polymer composites using nanosecond and femtosecond UV lasers. Int J Adv Manuf Technol 74, 1691–1699 (2014). https://doi.org/10.1007/s00170-014-6099-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6099-6

Keywords

Navigation