Skip to main content
Log in

Experimental study on mechanism of influence of laser energy density on surface quality of Ti-6Al-4V alloy in selective laser melting

激光能量密度对选区激光熔化Ti-6Al-4V合金表面质量影响机理的实验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This experiment obtained different laser energy density (LED) by changing SLM molding process parameters. The surface morphology, surface quality, and microstructure of as-fabricated samples were studied. The effects of scanning speed, hatching space, and laser power on surface quality were analyzed, and the optimal LED range for surface quality was determined. The results show that pores and spherical particles appear on the sample’s surface when low LED is applied, while there are lamellar structures on the sides of the samples. Cracks appear on the sample’s surface, and the splash phenomenon increases when a high LED is taken. At the same time, a large amount of unmelted powder adhered to the side of the sample. The surface quality is the best when the LED is 150–170 J/mm3. The preferred hatch space is currently 0.05–0.09 mm, the laser power is 200–350 W, and the average surface roughness value is (15.1±3) µm. The average surface hardness reaches HV404±HV3, higher than the forging standard range of HV340–HV395. Increasing the LED within the experiment range can increase the surface hardness, yet an excessively high LED will not further increase the surface hardness. The microstructure is composed of needle-like α′-phases with a length of about 20 µm, in a crisscross ‘N’ shape, when the LED is low. The β-phase grain boundary is not obvious, and the secondary-phase volume fraction is high; when the LED is high, the α′-phase of the microstructure is in the form of coarse slats, and the secondary-phase is composed of a small amount of secondary α′-phase, the tertiary α′-phase and the fourth α′-phase disappear, and the volume fraction of the secondary-phase becomes low.

摘要

通过改变 SLM 成型工艺参数获得不同的激光能量密度(LED),研究了成形样品的表面形貌、表 面质量和微观组织并分析了扫描速度、扫描线间距和激光功率对表面质量的影响,确定了表面质量的 最佳 LED 范围。结果表明,在较低LED时,样品表面出现气孔和球化现象,而样品侧面存在层状结 构。在较高LED时,飞溅现象加剧且样品表面出现裂纹,同时大量未熔化的粉末粘附在样品的侧面。 LED在150∼170 J/mm3 范围内得到的表面质量最好。目前优选的扫描线间距为0.05∼0.09 mm,激光功 率为200∼350 W,平均表面粗糙度值为(15.1±3) μm,平均表面硬度达到HV404±HV3,高于锻造标准范 围HV340∼HV395。在实验范围内增加 LED 可以增加表面硬度,但过高的 LED 不会进一步增加表面硬 度。试样微观组织主要由长约20 μm的针状α’相组成,呈N形。当LED较低时,β 相晶界不明显,次 生相体积分数较高; 当LED较高时,微观组织的α’相呈粗板条状,次生相由少量二次α’相组成,三次 α’相和四次α’相消失,次生相体积分数变低。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FRAZIER W E. Metal additive manufacturing: A review [J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1917–1928. DOI: https://doi.org/10.1007/s11665-014-0958-z.

    Article  Google Scholar 

  2. ZHANG Wan-neng, WANG Lin-zhi, FENG Zhong-xue, et al. Research progress on selective laser melting (SLM) of magnesium alloys: A review [J]. Optik, 2020, 207: 163842. DOI: https://doi.org/10.1016/j.ijleo.2019.163842.

    Article  Google Scholar 

  3. OLAKANMI E O, COCHRANE R F, DALGARNO K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties [J]. Progress in Materials Science, 2015, 74: 401–477. DOI: https://doi.org/10.1016/j.pmatsci.2015.03.002.

    Article  Google Scholar 

  4. GU D D, MEINERS W, WISSENBACH K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms [J]. International Materials Reviews, 2012, 57(3): 133–164. DOI: https://doi.org/10.1179/1743280411Y.0000000014.

    Article  Google Scholar 

  5. DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Progress in Materials Science, 2018, 92: 112–224. DOI: https://doi.org/10.1016/j.pmatsci.2017.10.001.

    Article  Google Scholar 

  6. ZOU Sheng, XIAO Han-bin, YE Fang-ping, et al. Numerical analysis of the effect of the scan strategy on the residual stress in the multi-laser selective laser melting [J]. Results in Physics, 2020, 16: 103005. DOI: https://doi.org/10.1016/j.rinp.2020.103005.

    Article  Google Scholar 

  7. LIVERANI E, TOSCHI S, CESCHINI L, et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel [J]. Journal of Materials Processing Technology, 2017, 249: 255–263. DOI: https://doi.org/10.1016/j.jmatprotec.2017.05.042.

    Article  Google Scholar 

  8. EBRAHIMI M, AMINI S, MAHDAVI S M. The investigation of laser shock peening effects on corrosion and hardness properties of ANSI 316L stainless steel [J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(5–8): 1557–1565. DOI: https://doi.org/10.1007/s00170-016-8873-0.

    Article  Google Scholar 

  9. CHLEBUS E, GRUBER K, KUŹNICKA B, et al. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting [J]. Materials Science and Engineering: A, 2015, 639: 647–655. DOI: https://doi.org/10.1016/j.msea.2015.05.035.

    Article  Google Scholar 

  10. PAL S, GUBELJAK N, HUDÁK R, et al. Evolution of the metallurgical properties of Ti-6Al-4V, produced with different laser processing parameters, at constant energy density in selective laser melting [J]. Results in Physics, 2020, 17: 103186. DOI: https://doi.org/10.1016/j.rinp.2020.103186.

    Article  Google Scholar 

  11. SUN Ru-jian, KELLER S, ZHU Ying, et al. Experimental-numerical study of laser-shock-peening-induced retardation of fatigue crack propagation in Ti-17 titanium alloy [J]. International Journal of Fatigue, 2021, 145: 106081. DOI: https://doi.org/10.1016/j.ijfatigue.2020.106081.

    Article  Google Scholar 

  12. YAN Chun-ze, HAO Liang, HUSSEIN A, et al. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51: 61–73. DOI: https://doi.org/10.1016/j.jmbbm.2015.06.024.

    Article  Google Scholar 

  13. YAO Jian-hua, WANG Ye, WU Guo-long, et al. Growth characteristics and properties of micro-arc oxidation coating on SLM-produced TC4 alloy for biomedical applications [J]. Applied Surface Science, 2019, 479: 727–737. DOI: https://doi.org/10.1016/j.apsusc.2019.02.142.

    Article  Google Scholar 

  14. ZHU Zhuo, WU Jun-rui, WU Zhi-peng, et al. Femtosecond laser micro/nano fabrication for bioinspired superhydrophobic or underwater superoleophobic surfaces [J]. Journal of Central South University, 2021, 28(12): 3882–3906. DOI: https://doi.org/10.1007/s11771-021-4886-4.

    Article  Google Scholar 

  15. WU Ting-ni, WU Zhi-peng, HE Yu-chun, et al. Femtosecond laser textured porous nanowire structured glass for enhanced thermal imaging [J]. Chinese Optics Letters, 2022, 20(3): 033801. DOI: https://doi.org/10.3788/col202220.033801.

    Article  Google Scholar 

  16. WU Guo-long, WANG Ye, SUN Min, et al. Influence of microstructure of TC4 substrate on the MAO coating [J]. Surface Engineering, 2020, 36(8): 827–836. DOI: https://doi.org/10.1080/02670844.2019.1693732.

    Article  Google Scholar 

  17. WANG Xiao, WANG Zhan-wen, SHEN Li-da, et al. Properties of jet electrodeposition nickel coating on TC4 alloy prepared by selective laser melting [J]. International Journal of Electrochemical Science, 2019, 8(14): 7717–7728. DOI: https://doi.org/10.20964/2019.08.01.

    Article  Google Scholar 

  18. HE Pei-yu, LI Fu-zhu, GUO Jun, et al. Research on the water cavitation peening process and mechanism of TC4 titanium alloy [J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(5–6): 1259–1269. DOI: https://doi.org/10.1007/s00170-020-06566-2.

    Article  Google Scholar 

  19. ZHAO Zhan-yong, LI Liang, BAI Pei-kang, et al. The heat treatment influence on the microstructure and hardness of TC4 titanium alloy manufactured via selective laser melting [J]. Materials, 2018, 11(8): 1318. DOI: https://doi.org/10.3390/ma11081318.

    Article  Google Scholar 

  20. HERZOG D, SEYDA V, WYCISK E, et al. Additive manufacturing of metals [J]. Acta Materialia, 2016, 117: 371–392. DOI: https://doi.org/10.1016/j.actamat.2016.07.019.

    Article  Google Scholar 

  21. GUO Meng, GU Dong-dong, XI Li-xia, et al. Selective laser melting additive manufacturing of pure tungsten: Role of volumetric energy density on densification, microstructure and mechanical properties [J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105025. DOI: https://doi.org/10.1016/j.ijrmhm.2019.105025.

    Article  Google Scholar 

  22. ANNA M Ź. Effect of laser energy density, internal porosity and heat treatment on mechanical behavior of biomedical Ti6Al4V alloy obtained with DMLS technology [J]. Materials (Basel, Switzerland), 2019, 12(14): 2331. DOI: https://doi.org/10.3390/ma12142331.

    Article  Google Scholar 

  23. LIU Bin, LI Bao-qiang, LI Zhong-hua. Selective laser remelting of an additive layer manufacturing process on AlSi10Mg [J]. Results in Physics, 2019, 12: 982–988. DOI: https://doi.org/10.1016/j.rinp.2018.12.018.

    Article  Google Scholar 

  24. JAVIDRAD H R, GHANBARI M, JAVIDRAD F. Effect of scanning pattern and volumetric energy density on the properties of selective laser melting Ti-6Al-4V specimens [J]. Journal of Materials Research and Technology, 2021, 12: 989–998. DOI: https://doi.org/10.1016/j.jmrt.2021.03.044.

    Article  Google Scholar 

  25. SHI Wen-tian, WANG Peng, LIU Yu-de, et al. Properties of 316L formed by a 400 W power laser Selective Laser Melting with 250 µm layer thickness [J]. Powder Technology, 2020, 360: 151–164. DOI: https://doi.org/10.1016/j.powtec.2019.09.059.

    Article  Google Scholar 

  26. LI Wei, LIU Jie, WEN Shi-feng, et al. Crystal orientation, crystallographic texture and phase evolution in the Ti-45Al-2Cr-5Nb alloy processed by selective laser melting [J]. Materials Characterization, 2016, 113: 125–133. DOI: https://doi.org/10.1016/j.matchar.2016.01.012.

    Article  Google Scholar 

  27. GUSSONE J, HAGEDORN Y C, GHEREKHLOO H, et al. Microstructure of γ-titanium aluminide processed by selective laser melting at elevated temperatures [J]. Intermetallics, 2015, 66: 133–140. DOI: https://doi.org/10.1016/j.intermet.2015.07.005.

    Article  Google Scholar 

  28. WANG Di, WU Shi-biao, FU Fan, et al. Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties [J]. Materials & Design, 2017, 117: 121–130. DOI: https://doi.org/10.1016/j.matdes.2016.12.060.

    Article  Google Scholar 

  29. LI Rui-di, NIU Peng-da, YUAN Tie-chui, et al. Displacive transformation as pathway to prevent micro-cracks induced by thermal stress in additively manufactured strong and ductile high-entropy alloys [J]. Transactions of Nonferrous Metals Society of China, 2021, 31(4): 1059–1073. DOI: https://doi.org/10.1016/S1003-6326(21)65561-9.

    Article  Google Scholar 

  30. YIN Kai, WANG Ling-xiao, DENG Qin-wen, et al. Femtosecond laser thermal accumulation-triggered micro-/nanostructures with patternable and controllable wettability towards liquid manipulating [J]. Nano-Micro Letters, 2022, 14(1): 97. DOI: https://doi.org/10.1007/s40820-022-00840-6.

    Article  Google Scholar 

  31. SHI Xue-zhi, MA Shu-yuan, LIU Chang-meng, et al. Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks [J]. Optics & Laser Technology, 2017, 90: 71–79. DOI: https://doi.org/10.1016/j.optlastec.2016.11.002.

    Article  Google Scholar 

  32. MERCELIS P, KRUTH J P. Residual stresses in selective laser sintering and selective laser melting [J]. Rapid Prototyping Journal, 2006, 12(5): 254–265. DOI: https://doi.org/10.1108/13552540610707013.

    Article  Google Scholar 

  33. WANG Shuo, LIU Yu-de, SHI Wen-tian, et al. Research on high layer thickness fabricated of 316L by selective laser melting [J]. Materials (Basel, Switzerland), 2017, 10(9): 1055. DOI: https://doi.org/10.3390/ma10091055.

    Article  Google Scholar 

Download references

Funding

Projects(51975006, 51505006) supported by the National Natural Science Foundation of China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-tian Shi  (石文天).

Additional information

Contributors

The overarching research goals were developed by SHI Wen-tian, LI Ji-hang and LIU Yu-de. LIN Yu-xiang and Liu Shuai provided the measured landslides displacement data, and analyzed the measured data. SHI Wen-tian and LI Ji-hang established the models and calculated the predicted displacement. LIN Yu-xiang and HAN Yu-fan analyzed the calculated results. The initial draft of the manuscript was written by SHI Wen-tian, LI Ji-hang and LIU Yu-de. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Wt., Li, Jh., Liu, Yd. et al. Experimental study on mechanism of influence of laser energy density on surface quality of Ti-6Al-4V alloy in selective laser melting. J. Cent. South Univ. 29, 3447–3462 (2022). https://doi.org/10.1007/s11771-022-5135-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5135-1

Key words

关键词

Navigation