Skip to main content

Advertisement

Log in

Flexible 3D stretch-bending technology for aluminum profile

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

As the consumption of fossil energy from the traffic system increases, the need for 3D structural parts which provide the design engineer a lighter, stiffer, and more energy-efficient structure is required. A new flexible 3D stretch bending process (FSB) with multi-points dies (MPD) is thus being developed. This study seeks to find out the relationship between the springback error and the adjustment parameters for the FSB process. At first, the structure of flexible fundamental unit (FFU) with four degrees of freedom (DOF) MPD was designed and implemented. Then the FSB experiments with different bending radius of curvature and materials were carried out based on prototype of the flexible 3D stretch bending equipment. The experiment results show that the springback error increased linearly along the length of the workpiece. Without using the post-stretch force, the springback error declined from 7.90 % to 0.80 % by adjusting the positions of the FFU. Most importantly, the surface defects of the forming parts such as wrinkle and crack can be eliminated in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corona E (2004) Simple analysis for bend-stretch forming of aluminum extrusions. Int J Mech Sci 46(3):433–448. doi:10.1016/j.ijmecsci.2004.03.010

    Article  Google Scholar 

  2. Vollertsen F, Sprenger A, Kraus J, Arnet H (1999) Extrusion, channel, and profile bending: a review. J Mater Process Technol 87(1–3):1–27. doi:10.1016/S0924-0136(98)00339-2

    Article  Google Scholar 

  3. Guan YJ, Yuan GP, Sun S, Zhao GQ (2013) Process simulation and optimization of laser tube bending. Int J Adv Manuf Technol 65(1–4):333–342. doi:10.1007/s00170-012-4172-6

    Article  Google Scholar 

  4. Chatti S, Hermes M, Tekkaya AE, Kleiner M (2010) The new TSS bending process: 3D bending of profiles with arbitrary cross-sections. CIRP Ann Manuf Technol 59(1):315–318. doi:10.1016/j.cirp.2010.03.017

    Article  Google Scholar 

  5. Zhu H, Stelson KA (2003) Modeling and closed-loop control of stretch bending of aluminum rectangular tubes. J Manuf Sci Eng-Trans ASME 125(1):113–119. doi:10.1115/1.1536659

    Article  Google Scholar 

  6. Yu CL, Li XQ (2011) Theoretical analysis on springback of L-section extrusion in rotary stretch bending process. Trans Nonferrous Metals Soc China 21(12):2705–2710. doi:10.1016/s1003-6326(11)61113-8

    Article  Google Scholar 

  7. Miller JE, Kyriakides S, Bastard AH (2001) On bend-stretch forming of aluminum extruded tubes - I: experiments. Int J Mech Sci 43(5):1283–1317. doi:10.1016/s0020-7403(00)00039-4

    Article  MATH  Google Scholar 

  8. Geiger M, Sprenger A (1998) Controlled bending of aluminum extrusions. Ann ClRP 47(1):197–202

    Article  Google Scholar 

  9. Llorens FJ, Molina LM, Verdu AJ (2005) Flexibility of manufacturing systems, strategic change and performance. Int J Prod Econ 98(3):273–289. doi:10.1016/j.ijpe.2004.05.011

    Article  Google Scholar 

  10. Li MZ, Cai ZY, Sui Z, Yan QG (2002) Multi-point forming technology for sheet metal. J Mater Process Technol 129(1–3):333–338. doi:10.1016/S0924-0136(02)00685-4

    Article  Google Scholar 

  11. Cai ZY, Wang SH, Xu XD, Li MZ (2009) Numerical simulation for the multi-point stretch forming process of sheet metal. J Mater Process Technol 209(1):396–407. doi:10.1016/j.jmatprotec.2008.02.010

    Article  Google Scholar 

  12. Liu W, Yang YY, Li MZ (2010) Numerical simulation of multi-point stretch forming and controlling on accuracy of formed workpiece. Int J Adv Manuf Technol 50(1–4):61–66. doi:10.1007/s00170-009-2501-1

    Article  Google Scholar 

  13. Papazian JM (2002) Tools of change. Mech Eng 124(2):52–55

    Google Scholar 

  14. Wang SH, Cai ZY, Li MZ, Lan YW (2012) Numerical simulation on the local stress and local deformation in multi-point stretch forming process. Int J Adv Manuf Technol 60(9–12):901–911. doi:10.1007/s00170-011-3663-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Jc., Gao, S., Teng, F. et al. Flexible 3D stretch-bending technology for aluminum profile. Int J Adv Manuf Technol 71, 1939–1947 (2014). https://doi.org/10.1007/s00170-013-5590-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5590-9

Keywords

Navigation