Skip to main content

Advertisement

Log in

Two meta-heuristics for a multi-period minisum location–relocation problem with line restriction

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper investigates a multiperiod rectilinear distance minisum location problem, as a mixed-integer nonlinear programming (MINLP) model with a line-shaped barrier restriction, in which the starting point of the barrier uniformly distributed in the plane. The objective function of this model is to minimize the sum of the costs associated with the expected weighted barrier distance of the new facility from the existing facilities and the costs incurred by location-dependent relocation during the planning horizon. Then, a lower bound based on the forbidden region is presented. To show the validation of the presented model, a number of numerical examples are illustrated. The associated results show that the optimization software is effective for small-sized problems. However, the optimization software is unable to find an optimum solution for large-sized problems in a reasonable time. Thus, two meta-heuristics, namely genetic algorithm (GA) and imperialist competitive algorithm (ICA), are proposed. Finally, the associated results are compared and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamacher HW, Nickel S (1995) Restricted planar location-problems and applications. Naval Res Logist 42:967–992

    Article  MATH  MathSciNet  Google Scholar 

  2. Farahani RZ, Abedian M, Sharahi S (2009) Dynamic facility location problem In: Farahani RZ Hekmatfar M (ed) facility location. In: Concepts models algorithms and case studies. Physica-Verlag, Berlin, pp 347–373

    Google Scholar 

  3. Hamacher HW, Nickel S (1996) Multicriteria planar location problems. Eur J Oper Res 94:66–86

    Article  MATH  Google Scholar 

  4. Hamacher HW, Nickel S (1998) Classification of location problems. Locat Sci 6:229–242

    Article  Google Scholar 

  5. Katz IN, Cooper L (1981) Formulation and the case of Euclidean distance with one forbidden circle. Eur J Oper Res 6:166–173

    Article  MATH  MathSciNet  Google Scholar 

  6. Klamroth K (2004) Algebraic properties of location problems with one circular barrier. Eur J Oper Res 154:20–35

    Article  MATH  MathSciNet  Google Scholar 

  7. Bischoff M, Klamroth K (2007) An efficient solution method for Weber problems with barriers based on genetic algorithms. Eur J Oper Res 177(1):22–41

    Article  MATH  MathSciNet  Google Scholar 

  8. Bischoff M, Fleischmann T, Klamroth K (2009) The multi-facility location–allocation problem with polyhedral barriers. Comput Oper Res 36(5):1376–1392

    Article  MATH  MathSciNet  Google Scholar 

  9. Aneja YP, Parlar M (1994) Algorithms for Weber facility location in the presence of forbidden regions and/or barriers to travel. Trans Sci 28(1):70–76

    Article  MATH  Google Scholar 

  10. Butt SE, Cavalier TM (1996) An efficient algorithm for facility location in the presence of forbidden regions. Eur J Oper Res 90(1):56–70

    Article  MATH  Google Scholar 

  11. Klamroth K (2001) A reduction result for location problems with polyhedral barriers. Eur J Oper Res 1303:486–497

    Article  MathSciNet  Google Scholar 

  12. McGarvey RG, Cavalier TM (2003) A global optimal approach to facility location in the presence of forbidden regions. Comput Ind Eng 45:1–15

    Article  Google Scholar 

  13. Hansen P, Peeters D, Thisse J (1981) On the location of an obnoxious facility. Sistemi Urbani 3:299–317

    Google Scholar 

  14. Frieß L, Klamroth K, Sprau MA (2005) Wavefront approach to center location problems with barriers. Ann Oper Res 136(1):35–48

    Article  MATH  MathSciNet  Google Scholar 

  15. Larson RC, Sadiq G (1983) Facility location with the Manhattan metric in the presence of barriers to travel. Oper Res 31:652–669

    Article  MATH  MathSciNet  Google Scholar 

  16. Batta R, Ghose A, Palekar U (1989) Locating facilities on the Manhattan metric with arbitrarily shaped barriers and convex forbidden regions. Trans Sci 23(1):26–36

    Article  MATH  MathSciNet  Google Scholar 

  17. Hamacher HW, Klamroth K (2000) Planar Weber location problems with barriers and block norms. Ann Oper Res 96:191–208

    Article  MATH  MathSciNet  Google Scholar 

  18. Dearing PM, Segars R Jr (2002) An equivalence result for single facility planar location problems with rectilinear distance and barriers. Ann Oper Res 111:89–110

    Article  MATH  MathSciNet  Google Scholar 

  19. Dearing PM, Segars R Jr (2002) Solving rectilinear planar location problems with barriers by a polynomial partitioning. Ann Oper Res 111:111–133

    Article  MATH  MathSciNet  Google Scholar 

  20. Dearing PM, Hamacher HW, Klamroth K (2002) Dominating sets for rectilinear center location problems with polyhedral barriers. Naval Res Logist 497:647–665

    Article  MathSciNet  Google Scholar 

  21. Dearing PM, Klamroth K, Segars R Jr (2005) Planar location problems with block distance and barriers. Ann Oper Res 136:117–143

    Article  MATH  MathSciNet  Google Scholar 

  22. Savaş S, Batta R, Nagi R (2002) Finite-size facility placement in the presence of barriers to rectilinear travel. Oper Res 50(6):1018–1031

    Article  MATH  MathSciNet  Google Scholar 

  23. Kelachankuttu H, Batta R, Nagi R (2007) Contour line construction for a new rectangular facility in an existing layout with rectangular departments. Eur J Oper Res 180:149–162

    Article  MATH  Google Scholar 

  24. Sarkar A, Batta R, Nagi R (2007) Placing a finite size facility with a center objective on a rectangular plane with barriers. Eur J Oper Res 1793:1160–1176

    Article  Google Scholar 

  25. Wang SJ, Bhadury J, Nagi R (2002) Supply facility and input/output point locations in the presence of barriers. Comput Oper Res 29(6):685–699

    Article  MATH  Google Scholar 

  26. Nandikonda P, Batta R, Nagi R (2003) Locating a 1-center on a Manhattan plane with “arbitrarily” shaped barriers. Ann Oper Res 123:157–172

    Article  MATH  MathSciNet  Google Scholar 

  27. Klamroth K (2001) Planar Weber location problems with line barriers. Optimization 495:517–527

    Article  MathSciNet  Google Scholar 

  28. Klamroth K, Wiecek MM (2002) A bi-objective median location problem with a line barrier. Oper Res 50(4):670–679

    Article  MATH  MathSciNet  Google Scholar 

  29. Canbolat MS, Wesolowsky GO (2010) The rectilinear distance Weber problem in the presence of a probabilistic line barrier. Eur J Oper Res 20:114–121

    Article  MathSciNet  Google Scholar 

  30. Amiri-Aref M, Javadian N, Tavakkoli-Moghaddam R, Aryanezhad MB (2011) The center location problem with equal weights in the presence of a probabilistic line barrier. Int J Ind Eng Comput 2:793–800

    Google Scholar 

  31. Amiri-Aref M, Baboli A, Javadian N, Tavakkoli-Moghaddam R (2011) A bi-objective facility location problem in the presence of a probabilistic line barrier. Int Conf. on Comput Ind Eng (CIE41), USA 44-49

  32. Shiripour S, Mahdavi I, Amiri-Aref M, Mohammadnia-Otaghsara M, Mahdavi-Amiri N (2012) Multi-facility location problems in the presence of a probabilistic line barrier: a mixed-integer quadratic programming model. Int J Prod Res 50:3988–4008

    Article  Google Scholar 

  33. Amiri-Aref M, Javadian N, Tavakkoli-Moghaddam R, Baboli A, Shiripour S (2013) The center location-dependent relocation problem with a probabilistic line barrier. Appl Soft Comput 13:3380–3391

    Article  Google Scholar 

  34. Mahmood-Soltani F, Tavakkoli-Moghaddam R, Amiri-Aref M (2012) A facility location problem with Tchebychev distance in the presence of a probabilistic line barrier. Int J Eng 25:293–302

    Article  Google Scholar 

  35. Amiri-Aref M, Javadian N, Tavakkoli-Moghaddam R, Baboli A (2013) A new mathematical model for Weber location problem with a probabilistic polyhedral barrier. Int J Prod Res 51(20):6110–6128

    Article  Google Scholar 

  36. Drezner Z, Wesolowsky GP (1991) Facility location when demand is time dependent. Naval Res Logist 38:763–777

    Article  MATH  MathSciNet  Google Scholar 

  37. Shulman A (1991) An algorithm for solving dynamic capacitated plant location problems with discrete expansion sizes. Oper Res 39(3):423–436

    Article  MATH  MathSciNet  Google Scholar 

  38. Hormozi AM, Khumawala BM (1996) An improved algorithm for solving a multiperiod facility location problem. IIE Trans 28:105–114

    Article  Google Scholar 

  39. Current J, Ratick S, ReVelle C (1997) Dynamic facility location when the total number of facilities is uncertain: a decision analysis approach. Eur J Oper Res 110:597–609

    Article  Google Scholar 

  40. Hinojosa Y, Puerto J, Fernández FR (2000) A multiperiod two-echelon multicommodity capacitated plant location problem. Eur J Oper Res 123:271–291

    Article  MATH  Google Scholar 

  41. Melachrinoudis E, Min H, Messac A (2000) The relocation of a manufacturing/distribution facility from supply chain perspectives: a physical programming approach. Multi-Criteria Appl 10:15–39

    Google Scholar 

  42. Canel C, Khumawala BM, Law J, Loh A (2001) An algorithm for the capacitated multi-commodity multiperiod facility location problem. Comput Oper Res 28(5):411–427

    Article  MATH  MathSciNet  Google Scholar 

  43. Antunes A, Peeters D (2001) On solving complex multi-period location models using simulated annealing. Eur J Oper Res 130:190–201

    Article  MATH  MathSciNet  Google Scholar 

  44. Melo MT, Nickel S, Saldanha da Gama F (2003) Large-scale models for dynamic multi-commodity capacitated facility location Technical report 58 Fraunhofer Institute for Industrial Mathematics (ITWM) Kaiserslautern Germany. Available at www.itwm.fhg.de

  45. Melo MT, Nickel S, Saldanha da Gama F (2005) Dynamic multicommodity capacitated facility location: a mathematical modeling framework for strategic supply chain planning. Comput Oper Res 33:181–208

    Article  Google Scholar 

  46. Melo MT, Nickel S, Saldanha da Gama F (2009) An LP-rounding heuristic to solve a multi-period facility relocation problem Technical Report 168 Fraunhofer Institute for Industrial Mathematics (ITWM) Kaiserslautern Germany. Available at www.itwm.fhg.de

  47. Wang Q, Batta R, Bhadury J, Rump CM (2003) Budget constrained location problem with opening and closing of facilities. Comput Oper Res 30:2047–2069

    Article  MATH  MathSciNet  Google Scholar 

  48. Puerto J, Rodríguez-Chía AM (2006) New models for locating a moving service facility. Math Method Oper Res 63:31–51

    Article  MATH  Google Scholar 

  49. Van Roy T, Erlenkotter D (1982) A dual-based procedure for dynamic facility location. Manag Sci 28:1091–1105

    Article  MATH  Google Scholar 

  50. Erlenkotter D (1981) A comparative study of approaches to dynamic location problems. Eur J Oper Res 6(2):133–143

    Article  MATH  MathSciNet  Google Scholar 

  51. Dias J, Captivo ME, Clímaco J (2007) Efficient primal-dual heuristic for a dynamic location problem. Comput Oper Res 34:1800–1823

    Article  MATH  MathSciNet  Google Scholar 

  52. Behmardi B, Lee S (2008) Dynamic Multi-commodity Capacitated Facility Location Problem in Supply Chain, Proceedings of the Industrial Engineering Research Conference J Fowler and S Mason. 1914–1919

  53. Dias J, Captivo ME, Clímaco J (2009) A memetic algorithm for multiobjective dynamic location problems. J Global Optim 42(2):221–253

    Article  Google Scholar 

  54. Farahani RZ, Drezner Z, Asgari N (2009) Single facility location and relocation problem with time-dependent weights and discrete planning horizon. Ann Oper Res 167:353–368

    Article  MathSciNet  Google Scholar 

  55. Chand S (1988) Decision/forecast horizon for a single facility dynamic location/relocation problem. Oper Res Lett 7(5):247–251

    Article  MATH  MathSciNet  Google Scholar 

  56. Bastian M, Volkmer M (1992) A perfect forward procedure for a single facility dynamic location/relocation problem. Oper Res Lett 12(1):11–16

    Article  MATH  MathSciNet  Google Scholar 

  57. Daskin MS, Hopp WJ, Medina B (1992) Forecast horizons and dynamic facility location planning. Ann Oper Res 40(1):125–151

    Article  MATH  Google Scholar 

  58. Andreatta G, Mason FM (1994) A note on a perfect forward procedure for a single facility dynamic location/relocation problem. Oper Res Lett 15(2):81–83

    Article  MATH  MathSciNet  Google Scholar 

  59. Huang WV, Batta R, Babu AJG (1990) Relocation–promotion problem with Euclidean distance. Eur J Oper Res 461:61–72

    Article  Google Scholar 

  60. McAleer WE, Naqvi IA (1994) The relocation of ambulance stations: a successful case study. Eur J Oper Res 75(3):582–588

    Article  Google Scholar 

  61. Brotcorne L, Laporte G, Semet F (2003) Ambulance location and relocation models. Eur J Oper Res 147(3):451–463

    Article  MATH  MathSciNet  Google Scholar 

  62. Albareda-Sambola M, Fernández E, Hinojosa Y, Puerto J (2009) The multiperiod incremental service facility location problem. Comput Oper Res 36:1356–1375

    Article  MATH  Google Scholar 

  63. Başar A, Çatay B, Ünlüyurt T (2010) A multi-period double coverage approach for locating the emergency medical service stations in Istanbul. J Oper Res Soc:1–11

  64. Klamroth K (2002) Single-facility location problems with barriers. Springer-Verlag New York

  65. Atashpaz-Gargari E, Lucas C (2007) Imperialist Competitive Algorithm: An algorithm for optimization inspired by imperialistic competition. IEEE Congress on Evolutionary Computation Singapore 4661–4667

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Tavakkoli-Moghaddam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javadian, N., Tavakkoli-Moghaddam, R., Amiri-Aref, M. et al. Two meta-heuristics for a multi-period minisum location–relocation problem with line restriction. Int J Adv Manuf Technol 71, 1033–1048 (2014). https://doi.org/10.1007/s00170-013-5511-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5511-y

Keywords

Navigation