Skip to main content

Advertisement

Log in

A memetic algorithm for multi-objective dynamic location problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper describes a new multiobjective interactive memetic algorithm applied to dynamic location problems. The memetic algorithm integrates genetic procedures and local search. It is able to solve capacitated and uncapacitated multi-objective single or multi-level dynamic location problems. These problems are characterized by explicitly considering the possibility of a facility being open, closed and reopen more than once during the planning horizon. It is possible to distinguish the opening and reopening periods, assigning them different coefficient values in the objective functions. The algorithm is part of an interactive procedure that asks the decision maker to define interesting search areas by establishing limits to the objective function values or by indicating reference points. The procedure will be applied to some illustrative location problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbosa, H.J.C., Barreto, A.M.S.: An interactive genetic algorithm with co-evolution of weights for multiobjective problems. In: Proceedings of the Genetic and Evolutionary Computation Conference (2001)

  2. Branke, J., Kaubler, T., Schmek, H.: Guidance in evolutionary multi-objective optimization. Adv. Eng. Softw. Elsevier Publisher 32, 499–507 (2001)

    Google Scholar 

  3. Chalmet L.G., Lemonidis L. and Elzinga D.J. (1986). An algorithm for the bi-criterion integer programming problem. Eur. J. Oper. Res. 25: 292–300

    Article  Google Scholar 

  4. Cheung B.K.-S., Langevin A. and Villeneuve B. (2001). High performing techniques for solving complex location problems in industrial system design. J. Intelligent Manufa. 12: 455–466

    Article  Google Scholar 

  5. Coello Coello, C.A.: Handling preferences in evolutionary multiobjective optimization: a survey. In: Congress on Evolutionary Computation Proceedings (2000)

  6. Coello Coello C.A. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey and the state of the art. Comput. Meth. Appl. Mech. Eng. 191: 1245–1287

    Article  Google Scholar 

  7. Coello Coello, C.A., Van Veldhuizen, D., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic/Plenum Publishers (2002)

  8. Collette Y. and Siarry P. (2005). Three new metrics to measure the convergence of metaheuristics towards the pareto frontier and the aesthetic of a set of solutions in biobjective optimization. Comput. Oper. Res. 32: 773–792

    Article  Google Scholar 

  9. Correa, E.S., Steiner, M.T.A., Freitas, A.A., Carnieri, C.: A genetic algorithm for the P-median problem. Proceedings 2001 Genetic and Evolutionary Computation GECCO2001 (2001)

  10. Cortinhal, M.J., Captivo, M.E.: Genetic algorithms for the single source capacitated location problem. In: Resende, M., Sousa, J.P.d. (eds.) Metaheuristics: Computer Decision-Making, pp. 187–216. Kluwer Academic (2003)

  11. Deb, K.: Multi-objective Optimization using Evolutionary Algorithms. John Wiley & Sons (2001)

  12. Dias J., Captivo M.E. and Clímaco J. (2003). An interactive procedure dedicated to a bicriteria plant location model. Comput. Oper. Res. 30: 1977–2002

    Article  Google Scholar 

  13. Dias, J., Captivo, M.E., Clímaco, J.: Dynamic multi-level capacitated and uncapacitated location problems: an approach using primal-dual heuristics. Research Report 26/2004 Inesc-Coimbra, available on http://www.inescc.pt/documentos/26_2004.pdf (2004)

  14. Dias, J., Captivo, M.E., Clímaco, J.: Dynamic multi-level capacitated and uncapacitated location problems: an approach using primal-dual heuristics. In: INOC’05 Proceedings, Lisbon (2005a)

  15. Dias, J., Captivo, M.E., Clímaco, J.: A Hybrid algorithm for dynamic location problems. Inescc Research Report n. 3/2005, available on http://www.inescc.pt/documentos/3_2005.pdf (2005b)

  16. Dias, J., Captivo, M. E., Clímaco, J.: Capacitated dynamic location problems with opening, closure and reopening of facilites. In: Salhi, S., Drezner, Z. (eds.) IMA J. Manage. Math.: Models Appl. Location Anal. 17(4) 317–348 (2006)

  17. Dias J., Captivo M.E. and Clímaco J. (2007b). Efficient primal-dual heuristic for a dynamic location problem. Comput. Oper. Res. 34: 1800–1823

    Article  Google Scholar 

  18. Dias, J.M.: Localização Simples Multicritério: desenvolvimento de um algoritmo em ambiente interactivo. MsC thesis, Faculdade de Ciências da Universidade de Lisboa (2000)

  19. Domínguez-Marín P., Nickel S., Hansen P. and Mladenovic N. (2005). Heuristic procedures for solving the discrete ordered median problem. Ann. Oper. Res. 136: 145–173

    Article  Google Scholar 

  20. Ferreira, C.: Problemas de Localização e Distribuição Multicritério: aproximações e estudo de alguns casos com implicações ambientais. Departamento de Matemática (1997)

  21. Filipovic, V., Kratica, J., Tosic, D., Ljubic, I.: Fine grained tornament selection for the simple plant location problem. In: Proceedings of the 5th Online World Conference on Soft Computing Methods in Indsutrial Applications WSC5, September 2000

  22. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalisation. genetic algorithms: Proceedings of the Fifth International Conference, San Mateo, CA (1993)

  23. Granat, J., Makowski, M.: ISAAP—Interactive Specification and Analysis of Aspiration-Based Preferences. IR-98–052 (1998)

  24. Granat J. and Makowski M. (2000). Interactive specification and analysis of aspiration-based preferences. Eur. J. Oper. Res. 122: 469–485

    Article  Google Scholar 

  25. Hosage C.M. and Goodchild M.F. (1986). Discrete space location-allocation solutions from genetic algorithms. Ann. Oper. Res. 6: 35–46

    Article  Google Scholar 

  26. Hultz J., Klingman D., Ross G.T. and Soland R. (1981). An interactive computer system for multicriteria facility location. Comput. Oper. Res. 8: 249–261

    Article  Google Scholar 

  27. Huntley C. and Brown D. (1996). Parallel genetic algorithms with local search. Comput. Oper. Res. 23: 559–571

    Article  Google Scholar 

  28. Jaramillo J., Bhadury J. and Batta R. (2002). On the use of genetic algorithms to solve location problems. Comput. Oper. Res. 29: 761–779

    Article  Google Scholar 

  29. Jones D.F., Mirrazavi S.K. and Tamiz M. (2002). Multi-objective meta-heuristics: an overview of the current sate-of-the-art. Eur. J. Oper. Res. 137: 1–9

    Article  Google Scholar 

  30. Kratica, J.: Improvement of simple genetic algorithm for solving the uncapacitated warehouse location problem. Adv. Soft Comput. Eng. Design Manufact. 390–402 (1999)

  31. Kratica J., Tosic D., Filipovic V. and Ljubic I. (2001). Solving the simple plant location problem by genetic algorithm. RAIRO Oper. Res. 35: 127–142

    Article  Google Scholar 

  32. Murata, T., Ishibuchi, H., Gen, M.: Neighborhood structures for genetic local search algorithms. IEEE Trans. Syst. Man Cybernetics 259–263 (1998)

  33. Oei, C.K., Goldberg, D.E., Chang, S.-J.: Tournament Selection, Niching and the Preservation of Diversity.91011 (1991)

  34. Osman, I.H., Kelly, J.P.: Meta-Heuristics: Theory & Applications. Kluwer Academic Publishers (1996)

  35. Reeves, C., Höhn, C.: Integrating local search into genetic algorithms. Modern Heuristic Search Meth. 99–115 (1996)

  36. Reeves, C.R.: Using genetic algorithms with small populations. In: Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA (1993)

  37. Revelle C. and Laporte G. (1996). The plant location problem: new models and research prospects. Oper. Res. 44: 864–873

    Article  Google Scholar 

  38. Ross T. and Soland R. (1980). A multicriteria approach to the location of public facilities. Eur. J. Oper. Res. 4: 307–321

    Article  Google Scholar 

  39. Rothlauf, F., Goldberg, D.: Redundant representations in evolutionary computation. Research Report n. 2002025, Illinois Genetic Algorithms Laboratory (IlliGAL) Report (2002)

  40. Sakawa M. and Kato K. (2002). An interactive fuzzy satisficing method for general multiobjective 0–1 programming problems through genetic algorithms with double strings based on a reference solution. Fuzzy Sets Syst. 125: 289–300

    Article  Google Scholar 

  41. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. genetic algorithms and their applications: Proceedings of the First International Conference on Genetic Algorithms (1985)

  42. Shibuya M., Kita H. and Kobayashi S. (1999). Integration of multi-objective and interactive genetic algorithms and its application to animation design. IEEE Transactions on Syst. Man. Cybern. 3: 646–651

    Google Scholar 

  43. Shimizu Y. (1999). Multi-objective optimization for site location problems through hybrid genetic algorithm with neural networks. J. Chem. Eng. Jpn. 32: 51–58

    Article  Google Scholar 

  44. Srinivas N. and Deb K. (1994). Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2: 221–248

    Article  Google Scholar 

  45. Szczepanski, M., Wierzbicki, A.: Multiple criteria evolutionary algorithms in relation to reference point approaches and nadir estimation. International Conference on Multiple Criteria Decision Making, Austria 2002

  46. Veldhuizen D.A.V. and Lamont G.B. (2000). Multiobjective evolutionary algorithms: analysing the state-of- the-art. Evol. Comput. 8: 125–147

    Article  Google Scholar 

  47. Veldhuizen, D.V.: Multiobjective Evolutionary Algorithms: Classifications, Analysis and New Innovations, PhD Thesis, Air Force Institute of Technology, Faculty of the Graduate school of Engineering (1999)

  48. Weber M. and Borcherding K. (1993). Behavioral influences on weight judgements in multiattribute decision making. Eur. J. Oper. Res. 67: 1–12

    Article  Google Scholar 

  49. Wierzbicki, A.: Multi-objective and reference point optimization tools. In: Makowski, M., Wierzbicki, A.P., Wessels, J. (eds.) Model-Based Decision Support Methodology with Environmental Applications, pp. 215–247. Kluwer Academic Publishers (2000a)

  50. Wierzbicki, A.: Reference point methodology. In: M. M. Andrzej Wierzbicki, Jaap Wessels (eds.) Model-Based Decision Support Methodology with Environmental Applications, pp. 71–89. Kluwer Academic Publishers (2000b)

  51. Yagiura M. and Ibaraki T. (1996). The use of dynamic programming in genetic algorithms for permutation problems. Eur. J. Oper. Res. 92: 387–401

    Article  Google Scholar 

  52. Zitzler, E., Laumanns, M., Thiele, L., Fonseca, C.M., Fonseca, V.G.D.: Why quality assessment of multi-objective optimizers is difficult. In: Proceedings of the Genetic and Evolutionary Computation Conference (2002a)

  53. Zitzler, E. Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailiou, K., Fogarty, T. (eds) Evolutionary Methods for Design, 95–100. CIMNE Barcelona, Spain (2002b)

  54. Zitzler E. and Thiele L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3: 257–271

    Article  Google Scholar 

  55. Zitzler E., Thiele L. and Deb K. (2000). Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8: 173–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Dias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, J., Captivo, M.E. & Clímaco, J. A memetic algorithm for multi-objective dynamic location problems. J Glob Optim 42, 221–253 (2008). https://doi.org/10.1007/s10898-007-9239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9239-9

Keywords

Navigation