Skip to main content
Log in

Modeling of cutting force under the tool flank wear effect in end milling Ti6Al4V with solid carbide tool

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presented a study of the relationship between cutting force and tool flank wear of solid carbide tool during the wet end milling Ti6Al4V. The modeling of 3D cutting force in end milling considering tool flank wear was discussed, which showed that for the given cutting conditions, tool geometries, and workpiece material, cutting force under the tool flank wear effect can be predicted easily and conveniently. In addition, the experimental work of end milling Ti6Al4V with solid carbide tool was developed to investigate the relationship between cutting force and tool flank wear, and comparison between experimental results and predicted results was discussed. The results showed that the proposed mathematical model can help to predict 3D cutting force under the tool flank wear effect with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hong H, Riga AT, Cahoon JM, Scott CG (1993) Machinability of steels and titanium alloys under lubrication. Wear 162:34–39

    Article  Google Scholar 

  2. Oraby SE, Hayhurst DR (1991) Tool wear and force relationship in metal cutting. Int J Mech Sci 33(1):125–138

    Article  Google Scholar 

  3. Teitenberg M, Bayoumi AE, Yucessan G (1992) Tool wear modeling through analytical mechanistic model of milling process. Wear 154:287–304

    Article  Google Scholar 

  4. Waldorf DJ (1996) Shearing, ploughing and wear in orthogonal machining. PhD thesis, University of Illinois at Urbana-Champaign

  5. Smithey DW, Kapoor SG, DeVor RE (2000) A worn tool force model for three-dimensional cutting operations. Int J Mach Tools Manuf 40:1929–1950

    Article  Google Scholar 

  6. Youn JW, Yang MY (2001) A study on the relationships between static/dynamic cutting force components and tool wear. J Manuf Sci Eng 123:196–205

    Article  Google Scholar 

  7. Davim JP, Monteiro BA (2000) Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminum. J Mater Proc Technol 103:417–423

    Article  Google Scholar 

  8. Wang J, Huang CZ, Song WG (2003) The Effect of tool flank wear on the orthogonal cutting process and its practical implications. J Mater Proc Technol 142:338–346

    Article  Google Scholar 

  9. Huang Y, Liang SY (2005) Modeling of cutting forces under hard turning conditions considering tool wear effect. J Manuf Sci Eng 127:262–270

    Article  Google Scholar 

  10. Song WG (2006) Development of predictive force models for classical orthogonal and oblique cutting and turning operations incorporating tool flank wear effects. PhD thesis, School of Engineering Systems, Queensland University of Technology

  11. Belmonte M, Oliveira FJ, Sacramento J, Fernandes AJS, Silva RF (2004) Cutting forces evolution with tool wear in sintered hardmetal turning with CVD diamond. Diamond Relat Mater 13:843–847

    Article  Google Scholar 

  12. Lalwani DI, Mehta NK, Jain PK (2008) Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel. J Mater Proc Technol 206:167–179

    Article  Google Scholar 

  13. Sun J, Guo YB (2009) Material flow stress and failure in multiscale machining titanium alloy Ti-6Al-4V. Int J Adv Manuf Technol 41:651–659

    Article  Google Scholar 

  14. Chen G, Ren CZ, Yang XY, Jin XM, Guo T (2011) Finite element simulation of high-speed machining of titanium alloy (Ti-6Al-4V) based on ductile failure model. Int J Adv Manuf Technol 56:1027–1038

    Article  Google Scholar 

  15. Huang PL, Li JF, Sun J, Song LY (2012) Milling force vibration analysis in high-speed-milling titanium alloy using variable pitch angle mill. Int J Adv Manuf Technol 58(1):153–160

    Article  Google Scholar 

  16. Siddhpura A, Paurobally R (2013) A review of flank wear prediction methods for tool condition monitoring in a turning process. Int J Adv Manuf Technol 65:371–393

    Article  Google Scholar 

  17. Zhang S, Li JF, Wang YW (2012) Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions. J Clean Prod 32:81–87

    Article  Google Scholar 

  18. Turchetta S (2012) Cutting force and diamond tool wear in stone machining. Int J Adv Manuf Technol 61:441–448

    Article  Google Scholar 

  19. Cui XB, Zhao J, Tian XH (2013) Cutting forces, chip formation, and tool wear in high-speed face milling of AISI H13 steel with CBN tools. Int J Adv Manuf Technol 64:1737–1749

    Article  Google Scholar 

  20. Altintas Y (2000) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  21. Budak E, Altinta Y, Armarego EJA (1996) Prediction of milling force coefficients from orthogonal cutting data. Trans ASME 118:216–224

    Google Scholar 

  22. Stabler GV (1964) The chip flow law and its consequences. Adv Mach Tool Des Res 216–224

  23. ISO3685 (1993) Tool-life testing with single-point turning tools

  24. Li HZ, Zeng H, Chen XQ (2006) An experimental study of tool wear and cutting force variation in the end milling of Inconel 718 with coated carbide inserts. J Mater Proc Technol 180:296–304

    Article  Google Scholar 

  25. Li KM, Liang SY (2007) Modeling of cutting forces in near dry machining under tool wear effect. Int J Mach Tools Manuf 47:1292–1301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Sun, J., Li, J. et al. Modeling of cutting force under the tool flank wear effect in end milling Ti6Al4V with solid carbide tool. Int J Adv Manuf Technol 69, 2545–2553 (2013). https://doi.org/10.1007/s00170-013-5228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5228-y

Keywords

Navigation