Skip to main content
Log in

Recent developments and research challenges in electrochemical micromachining (µECM)

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Electrochemical machining (ECM) and especially electrochemical micromachining (μECM) became an attractive area of research due to the fact that this process does not create any defective layer after machining and that there is a growing demand for better surface integrity on different micro-applications such as microfluidics systems and stress free drilled holes in automotive and aerospace manufacturing with complex shapes. Electrochemical machining is a non-conventional machining process based on the phenomenon of electrolysis. This process requires maintaining a small gap (size of a few μm)—the inter-electrode gap—between the anode (workpiece) and the cathode (tool electrode) in order to achieve acceptable machining results (i.e. accuracy, high aspect ratio with appropriate material removal rate and efficiency). This paper presents different problematic areas of electrochemical micromachining (often referred to as electrochemical micromachining or μECM). The aim of this paper is to address the problems met by the μECM technology developers and to present the current state-of-the-art solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McGeough JA (1974) Principles of electrochemical machining. Chapman and Hall, London

    Google Scholar 

  2. Datta M, Harris D (1997) Electrochemical micromachining: an environmentally friendly. High Speed Proc Tech 42:3007–3013. doi:10.1016/S0013-4686(97)00147-3

    Google Scholar 

  3. Wei B (1994) Modeling and analysis of pulse electrochemical machining. The University of Nebraska, Lincoln

    Google Scholar 

  4. Rajurkar KP, Kozak J, Wei B, McGeough JA (1993) Study of pulse electrochemical machining characteristics. CIRP Ann Manuf Technol 42:231–234. doi:10.1016/S0007-8506(07)62432-9

    Article  Google Scholar 

  5. Rajurkar KP, Wei B, Kozak J, McGeough JA (1995) Modelling and monitoring interelectrode gap in pulse electrochemical machining. CIRP Ann Manuf Technol 44:177–180. doi:10.1016/S0007-8506(07)62301-4

    Article  Google Scholar 

  6. Kozak J, Rajurkar KP, Makkar Y (2004) Study of pulse electrochemical micromachining. J Manuf Process 6:7–14. doi:10.1016/S1526-6125(04)70055-9

    Article  Google Scholar 

  7. Kozak J, Rajurkar KP, Makkar Y (2004) Selected problems of micro-electrochemical machining. J Mater Process Technol 149:426–431. doi:10.1016/j.jmatprotec.2004.02.031

    Article  Google Scholar 

  8. Zhang Z, Zhu D, Qu N, Wang M (2007) Theoretical and experimental investigation on electrochemical micromachining. Microsyst Technol 13:607–612. doi:10.1007/s00542-006-0369-7

    Article  Google Scholar 

  9. Kamaraj AB, Sundaram MM (2013) Mathematical modeling and verification of pulse electrochemical micromachining of microtools. Int J Adv Manuf Technol. doi:10.1007/s00170-013-4896-y

    Google Scholar 

  10. Cagnon L, Kirchner V, Kock M et al (2003) Electrochemical micromachining of stainless steel by ultrashort voltage pulses. Z Phys Chem 217:299–314. doi:10.1524/zpch.217.4.299.20383

    Article  Google Scholar 

  11. Schuster R, Kirchner V, Allongue P, Ertl G (2000) Electrochemical micromachining. Science 289:98–101. doi:10.1126/science.289.5476.98

    Article  Google Scholar 

  12. Schuster R (2007) Electrochemical microstructuring with short voltage pulses. Chemphyschem A Eur J Chem Phys Phys Chem 8:34–39. doi:10.1002/cphc.200600401

    Article  Google Scholar 

  13. Schuster R, Kirchner V (2004) Method for electrochemically processing material. US 6689269 B1

  14. Trimmer AL, Hudson JL, Kock M, Schuster R (2003) Single-step electrochemical machining of complex nanostructures with ultrashort voltage pulses. Appl Phys Lett 82:3327. doi:10.1063/1.1576499

    Article  Google Scholar 

  15. Kock M, Kirchner V, Schuster R (2003) Electrochemical micromachining with ultrashort voltage pulses—a versatile method with lithographical precision. Electrochim Acta 48:3213–3219. doi:10.1016/S0013-4686(03)00374-8

    Article  Google Scholar 

  16. Li Z, Ji H (2009) Machining accuracy prediction of aero-engine blade in electrochemical machining based on BP neural network. Proceedings of the 2009 International Workshop on Information Security and Application (IWISA 2009). Academy Publisher, Qingdao, China, pp 9–12, ISBN 978-952-5726-06-0

    Google Scholar 

  17. Wang M, Zhu D, Qu NS, Zhang CY (2007) Preparation of turbulated cooling hole for gas turbine blade using electrochemical machining. Key Eng Mater 329:699–704. doi:10.4028/www.scientific.net/KEM.329.699

    Article  Google Scholar 

  18. Datta M, Landolt D (2000) Fundamental aspects and applications of electrochemical microfabrication. Electrochim Acta 45:2535–2558. doi:10.1016/S0013-4686(00)00350-9

    Article  Google Scholar 

  19. Kamaraj AB, Sundaram MM, Mathew R (2013) Ultra high aspect ratio penetrating metal microelectrodes for biomedical applications. Microsyst Technol 19:179–186. doi:10.1007/s00542-012-1653-3

    Article  Google Scholar 

  20. Lu X, Leng Y (2005) Electrochemical micromachining of titanium surfaces for biomedical applications. J Mater Process Technol 169:173–178. doi:10.1016/j.jmatprotec.2005.04.040

    Article  Google Scholar 

  21. Bhattacharyya B, Doloi B, Sridhar PS (2001) Electrochemical micro-machining: new possibilities for micro-manufacturing. J Mater Process Technol 113:301–305. doi:10.1016/S0924-0136(01)00629-X

    Article  Google Scholar 

  22. Bhattacharyya B, Malapati M, Munda J (2004) Advancement in electrochemical micro-machining. Int J Mach Tool Manuf 44:1577–1589. doi:10.1016/j.ijmachtools.2004.06.006

    Article  Google Scholar 

  23. Landolt D, Chauvy P-F, Zinger O (2003) Electrochemical micromachining, polishing and surface structuring of metals: fundamental aspects and new developments. Electrochim Acta 48:3185–3201. doi:10.1016/S0013-4686(03)00368-2

    Article  Google Scholar 

  24. Rajurkar KP, Levy G, Malshe A et al (2006) Micro and nano machining by electro-physical and chemical processes. CIRP Ann Manuf Technol 55:643–666. doi:10.1016/j.cirp.2006.10.002

    Article  Google Scholar 

  25. Mithu MAH, Fantoni G, Ciampi J, Santochi M (2012) On how tool geometry, applied frequency and machining parameters influence electrochemical microdrilling. CIRP J Manuf Sci Technol 5:202–213. doi:10.1016/j.cirpj.2012.07.006

    Article  Google Scholar 

  26. Shin HS, Kim BH, Chu CN (2008) Analysis of the side gap resulting from micro electrochemical machining with a tungsten wire and ultrashort voltage pulses. J Micromech Microeng 18:075009. doi:10.1088/0960-1317/18/7/075009

    Article  Google Scholar 

  27. Bignon C, Bédrin C, Weill R (1982) Application of eddy currents to the in-process measurement of the gap in E.C.M. CIRP Ann Manuf Technol 31:115–118. doi:10.1016/S0007-8506(07)63280-6

    Article  Google Scholar 

  28. Meijer J, Veringa JCM (1984) Characteristic numbers to describe the detail transfer quality of electro-chemical machining. Precis Eng 6:79–82. doi:10.1016/0141-6359(84)90036-9

    Article  Google Scholar 

  29. Rajurkar KP, Schnacker CL, Packard H (1988) Some aspects of ECM performance and control. Ann of the CIRP 37:183–186. doi:10.1016/S0007-8506(07)61614-X

    Article  Google Scholar 

  30. Wei B, Rajurkar KP, Talpallikar S (1996) On-line identification of interelectrode gap sizes in pulse electrochemical machining (PECM). Proceedings of the symposium on High Rate Metal Dissolution Processes. p 248

  31. De Silva AKM, Altena HSJ, McGeough JA (2000) Precision ECM by process characteristic modelling. CIRP Ann Manuf Technol 49:151–155. doi:10.1016/S0007-8506(07)62917-5

    Article  Google Scholar 

  32. Fan Z-W, Hourng L-W (2011) Electrochemical micro-drilling of deep holes by rotational cathode tools. Int J Adv Manuf Technol 52:555–563. doi:10.1007/s00170-010-2744-x

    Article  Google Scholar 

  33. Yong L, Yunfei Z, Guang Y, Liangqiang P (2003) Localized electrochemical micromachining with gap control. Sensors Actuators A Phys 108:144–148. doi:10.1016/S0924-4247(03)00371-6

    Article  Google Scholar 

  34. Bhattacharyya B, Munda J (2003) Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain. Int J Mach Tool Manuf 43:1301–1310. doi:10.1016/S0890-6955(03)00161-5

    Article  Google Scholar 

  35. Mithu MAH, Fantoni G, Ciampi J (2011) A step towards the in-process monitoring for electrochemical microdrilling. Int J Adv Manuf Technol 57:969–982. doi:10.1007/s00170-011-3355-x

    Article  Google Scholar 

  36. Choi SH, Kim BH, Shin HS et al (2013) Analysis of the electrochemical behaviors of WC–Co alloy for micro ECM. J Mater Process Technol 213:621–630. doi:10.1016/j.jmatprotec.2012.10.018

    Article  Google Scholar 

  37. Ozkeskin FM (2008) Feedback controlled high frequency electrochemical micromachining. Thesis, Texas A&M University

  38. Clifton D, Mount A, Alder G, Jardine D (2002) Ultrasonic measurement of the inter-electrode gap in electrochemical machining. Int J Mach Tool Manuf 42:1259–1267. doi:10.1016/S0890-6955(02)00041-X

    Article  Google Scholar 

  39. Wei B, Li W, Lamphere MS (2005) Electrochemical machining tool assembly and method of monitoring electrochemical machining. LAP, New York

    Google Scholar 

  40. Muir RN, Curry DR, Mill F et al (2007) Real-time parameterization of electrochemical machining by ultrasound measurement of the interelectrode gap. Proc Inst Mech Eng Part B J Eng Manuf 221:551–558. doi:10.1243/09544054JEM567

    Article  Google Scholar 

  41. Kim B, Na C, Lee Y et al (2005) Micro electrochemical machining of 3D micro structure using dilute sulfuric acid. CIRP Ann Manuf Technol 54:191–194. doi:10.1016/S0007-8506(07)60081-X

    Article  Google Scholar 

  42. Labib AW, Keasberry VJ, Atkinson J, Frost HW (2011) Expert systems with applications towards next generation electrochemical machining controllers: a fuzzy logic control approach to ECM. Expert Syst Appl 38:7486–7493. doi:10.1016/j.eswa.2010.12.074

    Article  Google Scholar 

  43. Çaydaş U, Hasçalık A, Ekici S (2009) An adaptive neuro-fuzzy inference system (ANFIS) model for wire-EDM. Expert Syst Appl 36:6135–6139. doi:10.1016/j.eswa.2008.07.019

    Article  Google Scholar 

  44. Lin C-T, Chung I-F, Huang S-Y (2001) Improvement of machining accuracy by fuzzy logic at corner parts for wire-EDM. Fuzzy Set Syst 122:499–511. doi:10.1016/S0165-0114(00)00034-8

    Article  MathSciNet  Google Scholar 

  45. Mediliyegedara TKKR, Silva A, De KM, Harrison DK, McGeough JA (2005) New developments in the process control of the hybrid electro chemical discharge machining (ECDM) process. J Mater Process Technol 167:338–343. doi:10.1016/j.jmatprotec.2005.05.043

    Article  Google Scholar 

  46. Skrabalak G, Zybura-Skrabalak M, Ruszaj A (2004) Building of rules base for fuzzy-logic control of the ECDM process. J Mater Process Technol 149:530–535. doi:10.1016/j.jmatprotec.2003.11.058

    Article  Google Scholar 

  47. Abuzied HH (2012) Prediction of electrochemical machining process parameters using artificial neural networks. Int J Comp Sci Eng 4:125–132

    Google Scholar 

  48. Asokan P, Ravi Kumar R, Jeyapaul R, Santhi M (2008) Development of multi-objective optimization models for electrochemical machining process. Int J Adv Manuf Technol 39:55–63. doi:10.1007/s00170-007-1204-8

    Article  Google Scholar 

  49. Zare Chavoshi S (2011) Analysis and predictive modeling of performance parameters in electrochemical drilling process. Int J Adv Manuf Technol 53:1081–1101. doi:10.1007/s00170-010-2897-7

    Article  Google Scholar 

  50. Chang D-Y, Shen P-C, Hung J-C et al (2011) Process simulation-assisted fabricating micro-herringbone grooves for a hydrodynamic bearing in electrochemical micromachining. Mater Manuf Process 26:1451–1458. doi:10.1080/10426914.2011.551905

    Article  Google Scholar 

  51. Yonghua L, Kai L (2010) Fuzzy controlling interelectrode gap of ECM based on 6 dimensional forces and machining current. 2010 International Conference on Intelligent System Design and Engineering Application. IEEE, pp 775–779

  52. Wang Y, Chen H, Wang Z et al (2010) Development of a soft-computer numerical control system for micro-electrochemical machining. Am J Nanotech 1:51–55

    Article  Google Scholar 

  53. Kirchner V, Cagnon L, Schuster R, Ertl G (2001) Electrochemical machining of stainless steel microelements with ultrashort voltage pulses. Appl Phys Lett 79:1721. doi:10.1063/1.1401783

    Article  Google Scholar 

  54. Ahn SH, Ryu SH, Choi DK, Chu CN (2004) Electro-chemical micro drilling using ultra short pulses. Precis Eng 28:129–134. doi:10.1016/j.precisioneng.2003.07.004

    Article  Google Scholar 

  55. Kozak J, Gulbinowicz D, Gulbinowicz Z (2008) The mathematical modeling and computer simulation of pulse electrochemical micromachining. IAENG Transactions on engineering technologies volume 2: special edition of the World Congress on Engineering and Computer Science. AIP Conf. Proc., San Francisco, CA, USA, pp 174–185

  56. Marla D, Joshi SS, Mitra SK (2008) Modeling of electrochemical micromachining: comparison to experiments. J Micro/Nanolithography, MEMS and MOEMS 7:033015. doi:10.1117/1.2964215

    Article  Google Scholar 

  57. Mithu MAH, Fantoni G, Ciampi J (2011) The effect of high frequency and duty cycle in electrochemical microdrilling. Int J Adv Manuf Technol 55:921–933. doi:10.1007/s00170-010-3123-3

    Article  Google Scholar 

  58. Fan Z-W, Hourng L-W, Lin M-Y (2012) Experimental investigation on the influence of electrochemical micro-drilling by short pulsed voltage. Int J Adv Manuf Technol 61:957–966. doi:10.1007/s00170-011-3778-4

    Article  Google Scholar 

  59. Zemann R, Reiss PW, Schörghofer P, Bleicher F (2012) Cutting edge research in new technologies—chapter 1: some contributions at the technology of electrochemical micromachining with ultra short voltage pulses. 3–29. Doi: 10.5772/33560

  60. Yang I, Park MS, Chu CN (2009) Micro ECM with ultrasonic vibrations using a semi-cylindrical tool. Int J Precis Eng Manuf 10:5–10. doi:10.1007/s12541-009-0020-5

    Article  MATH  Google Scholar 

  61. Park BJ, Kim BH, Chu CN (2006) The effects of tool electrode size on characteristics of micro electrochemical machining. CIRP Ann Manuf Technol 55:197–200. doi:10.1016/S0007-8506(07)60397-7

    Article  Google Scholar 

  62. Davydov AD, Volgin VM, Lyubimov VV (2004) Electrochemical machining of metals: fundamentals of electrochemical shaping. Russ J Electrochem 40:1230–1265. doi:10.1007/s11175-005-0045-8

    Article  Google Scholar 

  63. Kim BH, Ryu SH, Choi DK, Chu CN (2005) Micro electrochemical milling. J Micromech Microeng 15:124–129. doi:10.1088/0960-1317/15/1/019

    Article  Google Scholar 

  64. Liu Y, Zhu D, Zhu L (2012) Micro electrochemical milling of complex structures by using in situ fabricated cylindrical electrode. Int J Adv Manuf Technol 60:977–984. doi:10.1007/s00170-011-3682-y

    Article  Google Scholar 

  65. Gao W, Arai Y, Shibuya A et al (2006) Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage. Precis Eng 30:96–103. doi:10.1016/j.precisioneng.2005.06.003

    Article  Google Scholar 

  66. Tsui H-P, Hung J-C, You J-C, Yan B-H (2008) Improvement of electrochemical microdrilling accuracy using helical tool. Mater Manuf Process 23:499–505. doi:10.1080/10426910802104237

    Article  Google Scholar 

  67. Yong L, Di Z, Yongbin Z et al (2010) Experimental investigation on complex structures machining by electrochemical micromachining technology. Chin J Aeronaut 23:578–584. doi:10.1016/S1000-9361(09)60257-0

    Article  Google Scholar 

  68. Jo CH, Kim BH, Shin HS et al (2008) Micro electrochemical machining for complex internal micro features. Internal Conference on Smart Manufacturing Application 247–250. doi: 10.1109/ICSMA.2008.4505651

  69. Bhattacharyya B, Malapati M, Munda J, Sarkar A (2007) Influence of tool vibration on machining performance in electrochemical micro-machining of copper. Int J Mach Tool Manuf 47:335–342. doi:10.1016/j.ijmachtools.2006.03.005

    Article  Google Scholar 

  70. Ruszaj A, Zybura M, Żurek R, Skrabalak G (2003) Some aspects of the electrochemical machining process supported by electrode ultrasonic vibrations optimization. Proc Inst Mech Eng B J Eng Manuf 217:1365–1371. doi:10.1243/095440503322617135

    Article  Google Scholar 

  71. Oh KS (2000) MOSFET basics, application note AN9010, Fairchild semiconductor 1–37

  72. Balogh L (2001) Design and application guide for high speed MOSFET gate drive circuits. Proc. Power Supply Design Seminar (SEM 1400)

  73. Tang T, Burkhart C (2009) Hybrid MOSFET/driver for ultra-fast switching. IEEE Trans Dielectr Electr Insul 16:967–970. doi:10.1109/TDEI.2009.5211841

    Article  Google Scholar 

  74. Campbell D, Harper J, Natham, Vinodhkumar, Xiao F, Sundararajan R (2008) A compact high voltage nanosecond pulse generator. Proc. ESA Annual Meeting on Electrostatics 2008. pp 1–12

  75. Zhang YJ, Tang YJ, Liu XK et al (2009) Development of ultra-short pulse power supply applicable to micro-ECM. Mater Sci Forum 626–627:369–374. doi:10.4028/www.scientific.net/MSF.626-627.369

    Article  Google Scholar 

  76. Burkert S, Schulze H, Gmelin T, Leone M (2009) The pulse electrochemical micromachining (PECMM)—specifications of the pulse units. Int J Mater Form 2:645–648. doi:10.1007/s12289-009-0464-2

    Article  Google Scholar 

  77. Schulze H, Borkenhagen D, Burkert S (2008) Demands on process and process energy sources for the electro-erosive and electrochemical micro machining. J Mater 1:1383–1386. doi:10.1007/s12289-008-0

    Google Scholar 

  78. Danilovic M, Chen Z, Wang R et al (2011) Evaluation of the switching characteristics of a gallium-nitride transistor. 2011 IEEE Energy Conversion Congress and Exposition. IEEE, pp 2681–2688

  79. Bhattacharyya B, Malapati M, Munda J (2005) Experimental study on electrochemical micromachining. J Mater Process Technol 169:485–492. doi:10.1016/j.jmatprotec.2005.04.074

    Article  Google Scholar 

  80. Swain AK (2010) Preparation of coated microtools for electrochemical machining applications. University of Nebraska

  81. Liu Y, Zhu D, Zeng Y, Yu H (2011) Development of microelectrodes for electrochemical micromachining. Int J Adv Manuf Technol 55:195–203. doi:10.1007/s00170-010-3035-2

    Article  Google Scholar 

  82. Kozak J, Dabrowski L, Lubkowski K et al (2000) CAE-ECM system for electrochemical technology of parts and tools. J Mater Process Technol 107:293–299. doi:10.1016/S0924-0136(00)00685-3

    Article  Google Scholar 

  83. Purcar M, Bortels L, Vandenbossche B, Deconinck J (2004) 3D electrochemical machining computer simulations. J Mater Process Technol 149:472–478. doi:10.1016/j.jmatprotec.2003.10.050

    Article  Google Scholar 

  84. Deconinck J (1992) Current distributions and electrode shape changes in electrochemical systems. Springer, Berlin

    Book  Google Scholar 

  85. Pattavanitch J, Hinduja S, Atkinson J (2010) Modelling of the electrochemical machining process by the boundary element method. CIRP Ann Manuf Technol 59:243–246. doi:10.1016/j.cirp.2010.03.072

    Article  Google Scholar 

  86. Narayanan OH, Hinduja S, Noble CF (1986) The prediction of workpiece shape during electrochemical machining by the boundary element method. Inter J Mach Tool Design Res 26:323–338. doi:10.1016/0020-7357(86)90009-0

    Article  Google Scholar 

  87. Kozak J (2001) Computer simulation system for electrochemical shaping. J Mater Process Technol 109:354–359. doi:10.1016/S0924-0136(00)00825-6

    Article  Google Scholar 

  88. Jain VK, Pandey PC (1981) Tooling design for ECM—a finite element approach. J Eng Ind 103:183. doi:10.1115/1.3184473

    Article  Google Scholar 

  89. Deconinck D, Van Damme S, Deconinck J (2012) A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: theoretical basis. Electrochim Acta 60:321–328. doi:10.1016/j.electacta.2011.11.070

    Article  Google Scholar 

  90. Deconinck D, Van Damme S, Deconinck J (2012) A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part II: numerical simulation. Electrochim Acta 69:120–127. doi:10.1016/j.electacta.2012.02.079

    Article  Google Scholar 

  91. Floridor G, Van den Bossche B, Nelissen G et al (2004) Numerical investigation of transient current density distributions for multi-ion electrolytes at a rotating disk electrode. Anal Chem 76:5579–5590. doi:10.1021/ac049804d

    Article  Google Scholar 

  92. Kenney JA, Hwang GS, Shin W (2004) Two-dimensional computational model for electrochemical micromachining with ultrashort voltage pulses. Appl Phys Lett 84:3774. doi:10.1063/1.1738937

    Article  Google Scholar 

  93. Hotoiu L, Van Damme S, Deconinck J (2011) Progress report PECMM simulations WP3-M4. 1–18

  94. Hotoiu EL, Van Damme S, Deconinck D et al (2011) Development of simulation software package for nano-pulsed electrochemical micro machining. The 219th ECS meeting

  95. Van Damme S, Hotoiu EL, Albu C et al (2011) Double layer effects in computational electrochemistry. The 219th ECS meeting

  96. Wang MH, Zhu D (2009) Fabrication of multiple electrodes and their application for micro-holes array in ECM. Int J Adv Manuf Technol 41:42–47. doi:10.1007/s00170-008-1456-y

    Article  Google Scholar 

  97. Zhu D, Xu HY (2002) Improvement of electrochemical machining accuracy by using dual pole tool. J Mater Process Technol 129:15–18. doi:10.1016/S0924-0136(02)00567-8

    Article  Google Scholar 

  98. Zhang Z, Wang Y, Chen F, Mao W (2011) A micro-machining system based on electrochemical dissolution of material. Russ J Electrochem 47:819–824. doi:10.1134/S1023193511070172

    Article  MATH  Google Scholar 

  99. Lee ES, Baek SY, Cho CR (2007) A study of the characteristics for electrochemical micromachining with ultrashort voltage pulses. Int J Adv Manuf Technol 31:762–769. doi:10.1007/s00170-005-0247-y

    Article  Google Scholar 

  100. Mathew R, Sundaram MM (2012) Modeling and fabrication of micro tools by pulsed electrochemical machining. J Mater Process Technol 212:1567–1572. doi:10.1016/j.jmatprotec.2012.03.004

    Article  Google Scholar 

  101. Choi SH, Ryu SH, Choi DK, Chu CN (2007) Fabrication of WC micro-shaft by using electrochemical etching. Int J Adv Manuf Technol 31:682–687. doi:10.1007/s00170-005-0241-4

    Article  Google Scholar 

  102. Huang SH, Huang FY, Yan BH (2004) Fracture strength analysis of micro WC-shaft manufactured by micro-electro-discharge machining. Int J Adv Manuf Technol 26:68–77. doi:10.1007/s00170-003-1974-6

    Article  Google Scholar 

  103. Pham DT, Dimov S, Bigot S et al (2004) Micro-EDM—recent developments and research issues. J Mater Process Technol 149:50–57. doi:10.1016/j.jmatprotec.2004.02.008

    Article  Google Scholar 

  104. Lee ES, Park JW, Moon YH (2002) A study on electrochemical micromachining for fabrication of microgrooves in an air-lubricated hydrodynamic bearing. Int J Adv Manuf Technol 20:720–726. doi:10.1007/s001700200229

    Article  Google Scholar 

  105. Haisch T, Mittemeijer E, Schultze JW (2001) Electrochemical machining of the steel 100Cr6 in aqueous NaCl and NaNO3 solutions: microstructure of surface films formed by carbides. Electrochim Acta 47:235–241

    Article  Google Scholar 

  106. Haisch T (2002) High rate electrochemical dissolution of iron-based alloys in NaCl and NaNO3 electrolytes. Max-Planck-Institut für Metallforschung Stuttgart

  107. Bähre D, Weber O, Rebschläger A (2013) Investigation on pulse electrochemical machining characteristics of lamellar cast iron using a response surface methodology-based approach. Procedia CIRP 6:363–368. doi:10.1016/j.procir.2013.03.028

    Google Scholar 

  108. Schulze H-P (2009) Problems of the processing accuracy for electro-erosion and electro-chemical machining processes. Int J Mater Form 2:641–644. doi:10.1007/s12289-009-0460-6

    Article  Google Scholar 

  109. Masuzawa T, Fujino M, Kobayashi K et al (1985) Wire electro-discharge grinding for micro-machining. CIRP Ann Manuf Technol 34:431–434. doi:10.1016/S0007-8506(07)61805-8

    Article  Google Scholar 

  110. Clark WG, McGeough JA (1977) Temperature distribution along the gap in electrochemical machining. J Appl Electrochem 7:277–286. doi:10.1007/BF01059167

    Article  Google Scholar 

  111. Mukherjee SK, Kumar S, Srivastava PK (2007) Effect of electrolyte on the current-carrying process in electrochemical machining. Proceedings of the Institution of Mechanical Engineers, part C. J Mech Eng Sci 1415–1419. doi: 10.1243/09544062JMES355

  112. De Silva AKM, Altena HSJ, McGeough JA (2003) Influence of electrolyte concentration on copying accuracy of precision-ECM. CIRP Ann Manuf Technol 52:165–168. doi:10.1016/S0007-8506(07)60556-3

    Article  Google Scholar 

  113. Hui C, Wang Y-K, Wang Z-L, Zhao W-S (2011) Effects of complexing agent on electrochemical micro machining of stainless steel. Am J Nanotechnol 2:100–105. doi:10.3844/ajnsp.2011.100.105

    Article  Google Scholar 

  114. Owlad M, Aroua MK, Daud WAW, Baroutian S (2009) Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut 200:59–77. doi:10.1007/s11270-008-9893-7

    Article  Google Scholar 

  115. Schuurman A, Faber J (1997) (WO1997035810) A method of removing iron compounds and chromium compounds from an aqueous electrolytic solution as well as the use of this method in electrochemical machining. 1–11

  116. Altena HSJ (2004) EDM and ECM for mass production Philips DAP. J Mater Process Technol 149:18–21. doi:10.1016/j.jmatprotec.2004.03.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanas Ivanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spieser, A., Ivanov, A. Recent developments and research challenges in electrochemical micromachining (µECM). Int J Adv Manuf Technol 69, 563–581 (2013). https://doi.org/10.1007/s00170-013-5024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5024-8

Keywords

Navigation