Skip to main content
Log in

Algorithms for no-wait flowshops with total completion time subject to makespan

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The m-machine no-wait flowshop scheduling problem, with the objective of minimizing total completion time subject to the constraint that makespan has to be less than or equal to a certain value, is addressed in this paper. First, an algorithm is proposed to find an upper bound on the makespan in case the upper bound is not given or unknown. Given the upper bound on makespan, a proposed algorithm (PAL) with five versions L (1, 5, 10, 15, and 20) and a genetic algorithm (GA) are utilized for solving the problem. Furthermore, a dominance relation is established for the case of four machines. The five versions of PAL and GA are evaluated on randomly generated problems with different number of jobs and number of machines. Computational experiments show that the errors of PA1 0, PA15, and PA20 are much smaller than that of GA while the CPU times of PA10, PA15, and PA20 are significantly smaller than that of GA. Therefore, the algorithms PA10, PA15, and PA20 are superior to the GA algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldowaisan T, Allahverdi A (2003) New heuristics for no-wait flowshops to minimize makespan. Comput Oper Res 30:1219–1231

    Article  MATH  Google Scholar 

  2. Aldowaisan T, Allahverdi A (2004) A new heuristic for m-machine no-wait flowshop to minimize total completion time. OMEGA Int J Manag Sci 32:345–352

    Article  Google Scholar 

  3. Allahverdi A, Aldowaisan T (2002) No-wait flowshops with bicriteria of makespan and total completion time. J Oper Res Soc 53:1004–1015

    Article  MATH  Google Scholar 

  4. Allahverdi A, Al-Anzi FS (2008) The two-stage assembly flowshop scheduling problem with bicriteria of makespan and mean completion time. Int J Adv Manuf Technol 37:166–177

    Article  Google Scholar 

  5. Allahverdi A, Gupta JND, Aldowaisan T (1999) A review of scheduling research involving setup considerations. OMEGA Int J Manag Sci 27:219–239

    Article  Google Scholar 

  6. Allahverdi A, Ng CT, Cheng TCE, Kovalyov MY (2008) A survey of scheduling problems with setup times or costs. Eur J Oper Res 187:985–1032

    Article  MathSciNet  MATH  Google Scholar 

  7. Aydilek H, Allahverdi A (2012) Heuristics for no-wait flowshops with makespan subject to mean completion time. Appl Math Comput 219:351–359

    Article  MathSciNet  Google Scholar 

  8. Bonney MC, Gundry SW (1976) Solutions to the constrained flowshop sequencing problem. Oper Res Q 24:869–883

    Article  Google Scholar 

  9. Chen-Ritzo CH, Bagchi S, Burns LE, Catlett SC (2011) Experiences in implementing simulation-based support for operational decision making in semiconductor manufacturing. Eur J Ind Eng 5:272–291

    Article  Google Scholar 

  10. Chen CL, Neppalli RV, Aljaber N (1996) Genetic algorithms applied to the continuous flow shop problem. Comput Ind Eng 30:919–929

    Article  Google Scholar 

  11. Chien CF, Dauzere-Peres S, Ehm H, Fowler JW, Jiang Z, Krishnaswamy S, Lee TE, Monch L, Uzsoy R (2011) Modelling and analysis of semiconductor manufacturing in a shrinking world: challenges and successes. Eur J Ind Eng 5:254–271

    Article  Google Scholar 

  12. El Amraoui A, Manier MA, El Moudni A, Benrejeb M (2012) Resolution of the two-part cyclic hoist scheduling problem with bounded processing times in complex lines' configuration. Eur J Ind Eng 6:454–473

    Article  Google Scholar 

  13. Fink A, Voß S (2003) Solving the continuous flow-shop scheduling problem by metaheuristics. Eur J Oper Res 151:400–414

    Article  MATH  Google Scholar 

  14. Framinan JM, Leisten R (2006) A heuristic for scheduling a permutation flowshop with makespan objective subject to maximum tardiness. Int J Prod Econ 99:28–40

    Article  Google Scholar 

  15. Framinan JM, Nagano MS (2008) Evaluating the performance for makespan minimization in no-wait flowshop sequencing. J Mater Process Technol 197:1–9

    Article  Google Scholar 

  16. Framinan JM, Nagano MS, Moccellin JV (2010) An efficient heuristic for total flowtime minimization in no-wait flowshops. Int J Adv Manuf Technol 46:1049–1057

    Article  Google Scholar 

  17. Gangadharan R, Rajendran C (1993) Heuristic algorithms for scheduling in the no-wait flowshop. Int J Prod Econ 32:285–290

    Article  Google Scholar 

  18. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading

  19. Grabowski J, Pempera J (2005) Some local search algorithms for no-wait flow-shop problem with makespan criterion. Comput Oper Res 32:2197–2212

    Article  MathSciNet  MATH  Google Scholar 

  20. Hall NG, Posner ME (2001) Generating experimental data for computational testing with machine scheduling applications. Oper Res 49:854–865

    Article  MathSciNet  MATH  Google Scholar 

  21. Hall NG, Sriskandarajah C (1996) A survey of machine scheduling problems with blocking and no-wait in process. Oper Res 44:510–525

    Article  MathSciNet  MATH  Google Scholar 

  22. King JR, Spachis AS (1980) Heuristics for flowshop scheduling. Int J Prod Res 18:343–357

    Google Scholar 

  23. Klemmt A, Weigert G, Werner S (2011) Optimisation approaches for batch scheduling in semiconductor manufacturing. Eur J Ind Eng 5:338–359

    Article  Google Scholar 

  24. Laha D, Chakraborty UK (2008) An efficient heuristic approach to total flowtime minimization in permutation flowshop scheduling. Int J Adv Manuf Technol 38:1018–1025

    Article  Google Scholar 

  25. Laha D, Chakraborty UK (2009) An efficient hybrid heuristic for makespan minimization in permutation flow shop scheduling. Int J Adv Manuf Technol 44:559–569

    Article  Google Scholar 

  26. Laha D, Chakraborty UK (2009) A constructive heuristic for minimizing makespan in no-wait flow shop scheduling. Int J Adv Manuf Technol 41:97–109

    Article  Google Scholar 

  27. Lin SW, Ying KC (2012) Scheduling a bi-criteria flowshop manufacturing cell with sequence-dependent family setup times. Eur J Ind Eng 6:474–496

    Article  Google Scholar 

  28. Madhushini N, Rajendran C (2011) Branch-and-bound algorithms for scheduling in an m-machine permutation flowshop with a single objective and with multiple objectives. Eur J Ind Eng 5:361–387

    Article  Google Scholar 

  29. Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs. Springer, Berlin

  30. Naderi B, Salmasi N (2012) Permutation flowshops in group scheduling with sequence-dependent setup times. Eur J Ind Eng 6:177–198

    Article  Google Scholar 

  31. Nagano MS, da Silva AA, Lorena LAN (2012) A new evolutionary clustering search for a no-wait flow shop problem with set-up times. Eng Appl Artif Intel 25:1114–1120

    Article  Google Scholar 

  32. Pan WK, Tasgetiren MF, Liang YC (2008) A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem. Comput Oper Res 35:2807–2837

    Article  MathSciNet  MATH  Google Scholar 

  33. Poppenborg J, Knust S, Hertzberg J (2012) Online scheduling of flexible job-shops with blocking and transportation. Eur J Ind Eng 6:497–518

    Article  Google Scholar 

  34. Qian B, Wang L, Hu R, Huang DX, Wang X (2009) A DE-based approach to no-wait flow-shop scheduling. Comput Ind Eng 57:787–805

    Article  Google Scholar 

  35. Rajendran C (1994) A no-wait flowshop scheduling heuristic to minimize makespan. J Oper Sci 45:472–478

    MATH  Google Scholar 

  36. Rajendran C, Chaudhuri D (1990) Heuristic algorithms for continuous flow-shop problem. Nav Res Logist 37:695–705

    Article  MATH  Google Scholar 

  37. Samarghandi H, ElMekkawy TY (2011) An efficient hybrid algorithm for the two-machine no-wait flow shop problem with separable setup times and single server. Eur J Ind Eng 5:111–131

    Article  Google Scholar 

  38. Schuster CJ, Framinan JM (2003) Approximative procedures for no-wait job shop scheduling. Oper Res Lett 31:308–318

    Article  MathSciNet  MATH  Google Scholar 

  39. Shyu SJ, Lin BMT, Yin PY (2004) Application of ant colony optimization for no-wait flowshop scheduling problem to minimize the total completion time. Comput Ind Eng 47:181–193

    Article  Google Scholar 

  40. Soroush HM (2012) Solving the single machine scheduling problem with general job-dependent past-sequence-dependent setup times and learning effects. Eur J Ind Eng 6:596–628

    Article  Google Scholar 

  41. Srirangacharyulu B, Srinivasan G (2011) Minimising mean squared deviation of job completion times about a common due date in multimachine systems. Eur J Ind Eng 5:424–447

    Article  Google Scholar 

  42. Stubbe K, Rose O (2011) Simulation analysis of semiconductor manufacturing with small lot size and batch tool replacements. Eur J Ind Eng 5:292–312

    Article  Google Scholar 

  43. Tajbakhsh A, Eshghi K, Shamsi A (2012) A hybrid PSO-SA algorithm for the travelling tournament problem. Eur J Ind Eng 6:2–25

    Article  Google Scholar 

  44. Tseng LY, Lin YT (2010) A hybrid genetic algorithm for no-wait flowshop scheduling problem. Int J Prod Econ 128:144–152

    Article  Google Scholar 

  45. Vinod V, Sridharan R (2009) Simulation-based metamodels for scheduling a dynamic job shop with sequence-dependent setup times. Int J Prod Res 47:1425–1447

    Article  MATH  Google Scholar 

  46. Ying KC (2012) Minimising makespan for multistage hybrid flowshop scheduling problems with multiprocessor tasks by a hybrid immune algorithm. Eur J Ind Eng 6:199–215

    Article  Google Scholar 

  47. Zhu J, Li X, Wang Q (2009) Complete local search with limited memory algorithm for no-wait job shops to minimize makespan. Eur J Oper Res 198:378–386

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Allahverdi.

Additional information

This research was conducted while the author Ali Allahverdi was a visiting professor at the Department of Industrial and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York. He was on sabbatical leave from Kuwait University.

Appendix (Proof of the Theorem)

Appendix (Proof of the Theorem)

Let

t k,m : processing time of job k on machine m(m = 1, 2, 3, and 4)

t [k,m]: processing time of the job in position k on machine m

C [k]: completion time of the job in position k on the fourth machine

We assume that every job requires processing on all machines, i.e., t j,k  > 0. Such a four-machine no-wait flowshop is necessarily a permutation flow shop. In other words, the order of jobs on all machines must be the same.

It can be shown that for a job in position k,

$$ {C_{{\left[ k \right]}}}=\sum\limits_{r=1}^k { \max \left\{ {0;{t_{{\left[ {r,3} \right]}}}-{t_{{\left[ {r-1,4} \right]}}}+ \max \left( {0;{t_{{\left[ {r,1} \right]}}}+{t_{{\left[ {r,2} \right]}}}-{t_{{\left[ {r-1,2} \right]}}}-{t_{{\left[ {r-1,3} \right]}}};{t_{{\left[ {r,2} \right]}}}-{t_{{\left[ {r-1,3} \right]}}}} \right)} \right\}+\sum\limits_{r=1}^k {{t_{{\left[ {r,4} \right]}}}} } $$
(1)

where, \( {t_{{\left[ {0,2} \right]}}}={t_{{\left[ {0,3} \right]}}}={t_{{\left[ {0,4} \right]}}}=0 \).

Since the total completion time, TCT, is

$$ \mathrm{TCT}=\sum\limits_{i=1}^n {{C_{{\left[ i \right]}}}} $$

It follows from Eq. 1 that

$$ \mathrm{TCT}=\sum\limits_{j=1}^n {\sum\limits_{i=1}^j {\left( { \max \left\{ {0;{t_{{\left[ {i,3} \right]}}}-{t_{{\left[ {i-1,4} \right]}}}+ \max \left( {0;{t_{{\left[ {i,1} \right]}}}+{t_{{\left[ {i,2} \right]}}}-{t_{{\left[ {i-1,2} \right]}}}-{t_{{\left[ {i-1,3} \right]}}};{t_{{\left[ {i,2} \right]}}}-{t_{{\left[ {i-1,3} \right]}}}} \right)} \right\}+{t_{{\left[ {i,4} \right]}}}} \right)} } $$
(2)

Consider two sequences σ 1 and σ 2 such that σ 1 has job i in an arbitrary position τ and job j in position τ + 1. The sequence σ 2 is exactly the same as σ 1 except that job j is in position τ and job i in position τ + 1.

Since the two sequences have the same job in positions up to and including τ − 1,

$$ {C_{{\left[ r \right]}}}\left( {{\sigma_1}} \right)={C_{{\left[ r \right]}}}\left( {{\sigma_2}} \right)\mathrm{for}\ r=1,2,\ldots,\tau -1 $$
(3)

Then, we have the following equations for the two sequences,

$$ \begin{array}{*{20}c} {{C_{{\left[ r \right]}}}\left( {{\sigma_1}} \right)=\sum\limits_{r=1}^{{\tau -1}} { \max } \left\{ {0;{t_{{\left[ {r,3} \right]}}}-{t_{{\left[ {r-1,4} \right]}}}+ \max \left( {0;{t_{{\left[ {r,1} \right]}}}+{t_{{\left[ {r,2} \right]}}}-{t_{{\left[ {r-1,2} \right]}}}-{t_{{\left[ {r-1,3} \right]}}};{t_{{\left[ {r,2} \right]}}}-{t_{{\left[ {r-1,3} \right]}}}} \right)} \right\}} \hfill \\ {+\sum\limits_{r=1}^{{\tau -1}} {{t_{{\left[ {r,4} \right]}}}} } \hfill \\ {+ \max \left\{ {0;{t_{i,3 }}-{t_{{\left[ {\tau, 1,4} \right]}}}+ \max \left( {0;{t_{i,1 }}+{t_{i,2 }}-{t_{{\left[ {\tau -1,2} \right]}}}-{t_{{\left[ {\tau -1,3} \right]}}};{t_{i,2 }}-{t_{{\left[ {\tau -1,3} \right]}}}} \right)} \right\}} \hfill \\ {+{t_{i,4 }}} \hfill \\ \end{array} $$
(4)
$$ \begin{array}{*{20}c} {{C_{{\left[ \tau \right]}}}\left( {{\sigma_2}} \right)=\sum\limits_{r=1}^{{\tau -1}} { \max \left\{ {0;{t_{{\left[ {r,3} \right]}}}-{t_{{\left[ {r-1,4} \right]}}}+ \max \left( {0;{t_{{\left[ {r,1} \right]}}}+{t_{{\left[ {r,2} \right]}}}-{t_{{\left[ {r-1,2} \right]}}}-{t_{{\left[ {r-1,3} \right]}}};{t_{{\left[ {r,2} \right]}}}-{t_{{\left[ {r-1,3} \right]}}}} \right)} \right\}} } \hfill \\ {+\sum\limits_{r=1}^{{\tau -1}} {{t_{{\left[ {r,4} \right]}}}} } \hfill \\ { + \max \left\{ {0;{t_{j,3 }}-{t_{{\left[ {\tau -1,4} \right]}}}+ \max \left( {0;{t_{j,1 }}+{t_{j,2 }}-{t_{{\left[ {\tau -1,2} \right]}}}-{t_{{\left[ {\tau -1,3} \right]}}};{t_{j,2 }}-{t_{{\left[ {\tau -1,3} \right]}}}} \right)} \right\}} \hfill \\ {+{t_{j,4 }}} \hfill \\ \end{array} $$
(5)
$$ \begin{array}{*{20}c} {{C_{{\left[ {\tau +1} \right]}}}\left( {{\sigma_1}} \right)=\sum\limits_{r=1}^{{\tau -1}} { \max } \left\{ {0;{t_{{\left[ {r,3} \right]}}}-{t_{{\left[ {r-1,4} \right]}}}+ \max \left( {0;{t_{{\left[ {r,1} \right]}}}+{t_{{\left[ {r,2} \right]}}}-{t_{{\left[ {r-1,2} \right]}}}-{t_{{\left[ {r-1,3} \right]}}};{t_{{\left[ {r,2} \right]}}}-{t_{{\left[ {r-1,3} \right]}}}} \right)} \right\}} \hfill \\ {+\sum\limits_{r=1}^{{\tau -1}} {{t_{{\left[ {r,4} \right]}}}} } \hfill \\ { + \max \left\{ {0;{t_{i,3 }}-{t_{{\left[ {\tau -1,4} \right]}}}+ \max \left( {0;{t_{i,1 }}+{t_{i,2 }}-{t_{{\left[ {\tau -1,2} \right]}}}-{t_{{\left[ {\tau -1,3} \right]}}};{t_{i,2 }}-{t_{{\left[ {\tau -1,3} \right]}}}} \right)} \right\}} \hfill \\ {+{t_{i,4 }}} \hfill \\ { + \max \left\{ {0;{t_{j,3 }}-{t_{i,4 }}+ \max \left( {0;{t_{j,1 }}+{t_{j,2 }}-{t_{i,2 }}-{t_{i,3 }};{t_{j,2 }}-{t_{i,3 }}} \right)} \right\}} \hfill \\ {+{t_{j,4 }}} \hfill \\ \end{array} $$
(6)
$$ \begin{array}{*{20}c} {{C_{{\left[ {\tau +1} \right]}}}\left( {{\sigma_2}} \right)=\sum\limits_{r=1}^{{\tau -1}} { \max \left\{ {0;{t_{r,3 }}-{t_{{\left[ {r-1,4} \right]}}}+ \max \left( {0;{t_{{\left[ {r,1} \right]}}}+{t_{{\left[ {r,2} \right]}}}-{t_{{\left[ {r-1,2} \right]}}}-{t_{{\left[ {r-1,3} \right]}}};{t_{{\left[ {r,2} \right]}}}-{t_{{\left[ {r-1,3} \right]}}}} \right)} \right\}} } \hfill \\ {+\sum\limits_{r=1}^{{\tau -1}} {{t_{{\left[ {r,4} \right]}}}} } \hfill \\ { + \max \left\{ {0;{t_{j,3 }}-{t_{{\left[ {\tau -1,4} \right]}}}+ \max \left( {0;{t_{j,1 }}+{t_{j,2 }}-{t_{{\left[ {\tau -1,2} \right]}}}-{t_{{\left[ {\tau -1,3} \right]}}};{t_{j,2 }}-{t_{{\left[ {\tau -1,3} \right]}}}} \right)} \right\}} \hfill \\ {+{t_{j,4 }}} \hfill \\ { + \max \left\{ {0;{t_{i,3 }}-{t_{j,4 }}+ \max \left( {0;{t_{i,1 }}+{t_{i,2 }}-{t_{j,2 }}-{t_{j,3 }};{t_{i,2 }}-{t_{j,3 }}} \right)} \right\}} \hfill \\ {+{t_{i,4 }}} \hfill \\ \end{array} $$
(7)

From equations (37),

$$ \begin{array}{*{20}c} {\left[ {{C_{{\left[ \tau \right]}}}\left( {{\sigma_1}} \right)+{C_{{\left[ {\tau +1} \right]}}}\left( {{\sigma_1}} \right)} \right]-\left[ {{C_{{\left[ \tau \right]}}}\left( {{\sigma_2}} \right)+{C_{{\left[ {\tau +1} \right]}}}\left( {{\sigma_2}} \right)} \right]} \\ {=2 \max \left\{ {0;{t_{i,3 }}-{t_{{\left[ {\tau -1,4} \right]}}}+ \max \left( {0;{t_{i,1 }}+{t_{i,2 }}-{t_{{\left[ {\tau -1,2} \right]}}}-{t_{{\left[ {\tau -1,3} \right]}}};{t_{i,2 }}-{t_{{\left[ {\tau -1,3} \right]}}}} \right)} \right\}} \\ {+ \max \left\{ {0;{t_{j,3 }}-{t_{i,4 }}+ \max \left( {0;{t_{j,1 }}+{t_{j,2 }}-{t_{i,2 }}-{t_{i,3 }};{t_{j,2 }}-{t_{i,3 }}} \right)} \right\}} \\ {-2 \max \left\{ {0;{t_{j,3 }}-{t_{{\left[ {\tau -1,4} \right]}}}+ \max \left( {0;{t_{j,1 }}+{t_{j,2 }}-{t_{{\left[ {\tau -1,2} \right]}}}-{t_{{\left[ {\tau -1,3} \right]}}};{t_{j,2 }}-{t_{{\left[ {\tau -1,3} \right]}}}} \right)} \right\}} \\ {- \max \left\{ {0;{t_{i,3 }}-{t_{j,4 }}+ \max \left( {0;{t_{i,1 }}+{t_{i,2 }}-{t_{j,2 }}-{t_{j,3 }};{t_{i,2 }}-{t_{j,3 }}} \right)} \right\}} \\ {+{t_{i,4 }}-{t_{j,4 }}} \\ \end{array} $$
(8)

It can be easily shown that if the conditions given in the hypothesis are satisfied, then Eq. 8 reduces to

$$ \left[ {{C_{{\left[ \tau \right]}}}\left( {{\sigma_1}} \right)+{C_{{\left[ {\tau +1} \right]}}}\left( {{\sigma_1}} \right)} \right]\leq \left[ {{C_{{\left[ \tau \right]}}}\left( {{\sigma_2}} \right)+{C_{{\left[ {\tau +1} \right]}}}\left( {{\sigma_2}} \right)} \right] $$
(9)

Now, for C [k] where k = τ + 2, … , n,

$$ \begin{array}{*{20}c} {{C_{{\left[ k \right]}}}\left( {{\sigma_1}} \right)=\sum\limits_{r=1}^{{\tau -1}} { \max \left\{ {0;{t_{{\left[ {r,3} \right]}}}-{t_{{\left[ {r-1,4} \right]}}}+ \max \left( {0;{t_{{\left[ {r,1} \right]}}}+{t_{{\left[ {r,2} \right]}}}-{t_{{\left[ {r-1,2} \right]}}}-{t_{{\left[ {r-1,3} \right]}}};{t_{{\left[ {r,2} \right]}}}-{t_{{\left[ {r-1,3} \right]}}}} \right)} \right\}} } \hfill \\ {+\sum\limits_{r=1}^{{\tau -1}} {{t_{{\left[ {r,4} \right]}}}} } \hfill \\ { + \max \left\{ {0;{t_{i,3 }}-{t_{{\left[ {\tau -1,4} \right]}}}+ \max \left( {0;{t_{i,1 }}+{t_{i,2 }}-{t_{{\left[ {\tau -1,2} \right]}}}-{t_{{\left[ {\tau -1,3} \right]}}};{t_{i,2 }}-{t_{{\left[ {\tau -1,3} \right]}}}} \right)} \right\}} \hfill \\ {+{t_{i,4 }}} \hfill \\ { + \max \left\{ {0;{t_{j,3 }}-{t_{i,4 }}+ \max \left( {0;{t_{j,1 }}+{t_{j,2 }}-{t_{i,2 }}-{t_{i,3 }};{t_{j,2 }}-{t_{i,3 }}} \right)} \right\}} \hfill \\ {+{t_{j,4 }}} \hfill \\ { + \max \left\{ {0;{t_{{\left[ {\tau +2,3} \right]}}}-{t_{j,4 }}+ \max \left( {0;{t_{{\left[ {\tau +2,1} \right]}}}+{t_{{\left[ {\tau +2,2} \right]}}}-{t_{j,2 }}-{t_{j,3 }};{t_{{\left[ {\tau +2,2} \right]}}}-{t_{j,3 }}} \right)} \right\}} \hfill \\ {+{t_{{\left[ {\tau +2,3} \right]}}}} \hfill \\ {+\sum\limits_{{r=\tau +3}}^k { \max \left\{ {0;{t_{{\left[ {r,3} \right]}}}-{t_{{\left[ {r-1,4} \right]}}}+ \max \left( {0;{t_{{\left[ {r,1} \right]}}}+{t_{{\left[ {r,2} \right]}}}-{t_{{\left[ {r-1,2} \right]}}}-{t_{{\left[ {r-1,3} \right]}}};{t_{{\left[ {r,2} \right]}}}-{t_{{\left[ {r-1,3} \right]}}}} \right)} \right\}} } \hfill \\ {+\sum\limits_{{r=\tau +3}}^k {{t_{{\left[ {r,4} \right]}}}} } \hfill \\ \end{array} $$
(10)
$$ \begin{array}{*{20}c} {{C_{{\left[ k \right]}}}\left( {{\sigma_2}} \right)=\sum\limits_{r=1}^{{\tau -1}} { \max \left\{ {0;{t_{{\left[ {r,3} \right]}}}-{t_{{\left[ {r-1,4} \right]}}}+ \max \left( {0;{t_{{\left[ {r,1} \right]}}}+{t_{{\left[ {r,2} \right]}}}-{t_{{\left[ {r-1,2} \right]}}}-{t_{{\left[ {r-1,3} \right]}}};{t_{{\left[ {r,2} \right]}}}-{t_{{\left[ {r-1,3} \right]}}}} \right)} \right\}} } \hfill \\ {+\sum\limits_{r=1}^{{\tau -1}} {{t_{{\left[ {r,4} \right]}}}} } \hfill \\ { + \max \left\{ {0;{t_{j,3 }}-{t_{{\left[ {\tau -1,4} \right]}}}+ \max \left( {0;{t_{j,1 }}+{t_{j,2 }}-{t_{{\left[ {\tau -1,2} \right]}}}-{t_{{\left[ {\tau -1,3} \right]}}};{t_{j,2 }}-{t_{{\left[ {\tau -1,3} \right]}}}} \right)} \right\}} \hfill \\ {+{t_{j,4 }}} \hfill \\ { + \max \left\{ {0;{t_{i,3 }}-{t_{j,4 }}+ \max \left( {0;{t_{i,1 }}+{t_{i,2 }}-{t_{j,2 }}-{t_{j,3 }};{t_{i,2 }}-{t_{j,3 }}} \right)} \right\}} \hfill \\ {+{t_{i,4 }}} \hfill \\ { + \max \left\{ {0;{t_{{\left[ {\tau +2,3} \right]}}}-{t_{i,4 }}+ \max \left( {0;{t_{{\left[ {\tau +2,1} \right]}}}+{t_{{\left[ {\tau +2,2} \right]}}}-{t_{i,2 }}-{t_{i,3 }};{t_{{\left[ {\tau +2,2} \right]}}}-{t_{i,3 }}} \right)} \right\}} \hfill \\ {+{t_{{\left[ {\tau +2,3} \right]}}}} \hfill \\ {+\sum\limits_{{r=\tau +3}}^k { \max \left\{ {0;{t_{{\left[ {r,3} \right]}}}-{t_{{\left[ {r-1,4} \right]}}}+ \max \left( {0;{t_{{\left[ {r,1} \right]}}}+{t_{{\left[ {r,2} \right]}}}-{t_{{\left[ {r-1,2} \right]}}}-{t_{{\left[ {r-1,3} \right]}}};{t_{{\left[ {r,2} \right]}}}-{t_{{\left[ {r-1,3} \right]}}}} \right)} \right\}} } \hfill \\ {+\sum\limits_{{r=\tau +3}}^k {{t_{{\left[ {r,4} \right]}}}} } \hfill \\ \end{array} $$
(11)

Where \( \sum\limits_{{r=\tau +3}}^{{\tau +2}} {(.)=0} \).

It follows from Eqs. 10 and 11 that

$$ \begin{array}{*{20}c} {{C_{{\left[ r \right]}}}\left( {{\sigma_1}} \right)-{C_{{\left[ r \right]}}}\left( {{\sigma_2}} \right)= \max \left\{ {0;{t_{i,3 }}-{t_{{\left[ {\tau -1,4} \right]}}}+ \max \left( {0;{t_{i,1 }}+{t_{i,2 }}-{t_{{\left[ {\tau -1,2} \right]}}}-{t_{{\left[ {\tau -1,3} \right]}}};{t_{i,2 }}-{t_{{\left[ {\tau -1,3} \right]}}}} \right)} \right\}} \hfill \\ { + \max \left\{ {0;{t_{j,3 }}-{t_{i,4 }}+ \max \left( {0;{t_{j,1 }}+{t_{j,2 }}-{t_{i,2 }}-{t_{i,3 }};{t_{j,2 }}-{t_{i,3 }}} \right)} \right\}} \hfill \\ { + \max \left\{ {0;{t_{{\left[ {\tau +2,3} \right]}}}-{t_{j,4 }}+ \max \left( {0;{t_{{\left[ {\tau +2,1} \right]}}}+{t_{{\left[ {\tau +2,2} \right]}}}-{t_{j,2 }}-{t_{j,3 }};{t_{{\left[ {\tau +2,2} \right]}}}-{t_{j,3 }}} \right)} \right\}} \hfill \\ { - \max \left\{ {0;{t_{j,3 }}-{t_{{\left[ {\tau -1,4} \right]}}}+ \max \left( {0;{t_{j,1 }}+{t_{j,2 }}-{t_{{\left[ {\tau -1,2} \right]}}}-{t_{{\left[ {\tau -1,3} \right]}}};{t_{j,2 }}-{t_{{\left[ {\tau -1,3} \right]}}}} \right)} \right\}} \hfill \\ { - \max \left\{ {0;{t_{i,3 }}-{t_{{\left[ {j,4} \right]}}}+ \max \left( {0;{t_{i,1 }}+{t_{i,2 }}-{t_{j,2 }}-{t_{j,3 }};{t_{i,2 }}-{t_{j,3 }}} \right)} \right\}} \hfill \\ { - \max \left\{ {0;{t_{{\left[ {\tau +2,3} \right]}}}-{t_{{\left[ {i,4} \right]}}}+ \max \left( {0;{t_{{\left[ {\tau +2,1} \right]}}}+{t_{{\left[ {\tau +2,2} \right]}}}-{t_{i,2 }}-{t_{i,3 }};{t_{{\left[ {\tau +2,2} \right]}}}-{t_{i,3 }}} \right)} \right\}} \hfill \\ \end{array} $$
(12)

Given that the conditions specified in the theorem are satisfied, then Eq. 12 satisfies

$$ {C_{{\left[ r \right]}}}\left( {{\sigma_2}} \right)\leq {C_{{\left[ r \right]}}}\left( {{\sigma_1}} \right)\ \mathrm{for}\ r=\tau +2,\tau +3,\ldots,n $$
(13)

Hence, the inequality TCT(σ 1) ≤ TCT(σ 2) holds as a result of Eqs. 3, 9, and 13.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allahverdi, A., Aydilek, H. Algorithms for no-wait flowshops with total completion time subject to makespan. Int J Adv Manuf Technol 68, 2237–2251 (2013). https://doi.org/10.1007/s00170-013-4836-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-4836-x

Keywords

Navigation