Skip to main content
Log in

Tribodynamic modeling of piston compression ring and cylinder liner conjunction in high-pressure zone of engine cycle

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Piston compression ring and cylinder liner contact contributes a significant part of friction loss in an engine. Most of this loss occurs during compression and power stroke transition (i.e., between 300° to 400° crank position). It is because of the combustion gas pressure is higher in this region to enhance ring–liner contact friction. In this paper, we developed a tribodynamic model to study the transient thermoelastohydrodynamics of ring–liner contact. It takes into account the combined solution of Reynolds equation, energy equation, and elastic deformation equation considering ring–liner conformability and rheology change. We estimate the minimum film profile, friction force, and friction power loss within a high-pressure zone of a high-performance engine. Roughness of the liner is characterized using R k parameter for better surface representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor RI (2003) Lubrication tribology in motor sports. Shell Res Publ (1):3355

  2. Robinson JE (1960) Piston assembly for compression ignition engines, part-I: pistons. Hipolite piston technology, England

    Google Scholar 

  3. Hill SH, Newman BA (1984) Piston ring designs for reduced friction. SAE Tech Pap 841222:1–17

    Google Scholar 

  4. Mishra PC, Rahnejat H, King PD (2009) Tribology of the ring–bore conjunction subject to a mixed regime of lubrication. Proc Instn Mech Engrs Part C: J Mech Engng Sci 223:987–998

    Article  Google Scholar 

  5. Dunaevsky VV, Alexandrov S, Barlat F (2000) Analysis of three-dimensional distortions of the piston rings with arbitrary cross-section. SAE Tech Pap 3453(01):1–7

    Google Scholar 

  6. Mishra PC, Balakrishnan S, Rahnejat H (2008) Tribology of compression ring-to-cylinder contact at reversal. Proc Instn Mech Engrs Part J: J Engg Tribol 222:815–826

    Article  Google Scholar 

  7. Okamoto M, Sakai I (2001) Contact pressure distribution of piston rings—calculation based on piston ring contour. SAE Tech Pap 0571(01):1–7

    Google Scholar 

  8. Love AEH (1944) A treatise on mathematical theory of elasticity. Dover, New York

    MATH  Google Scholar 

  9. Tian T (2002) Dynamic Behavior of piston rings and their practical impact, part-I: ring flutter and ring collapse and their effects on gas flow and oil transport. Proc Instn Mech Engrs Part J: J Engg Tribol 216:209–228

    Article  Google Scholar 

  10. Ma MT, Smith EH, Sherrington I (1997) Analysis of lubrication and friction for a complete piston ring pack with an improved oil availability model part-2: circumferentially variable film. Proc Inst Mech Engrs Part J: J Engg Tribol 211:17–27

    Article  Google Scholar 

  11. Hu Y, Cheng HS, Arai T, Kobayashi Y, Ayoma S (1994) Numerical simulation of piston ring in mixed lubrication: a nonaxisymmetrical analysis. Trans ASME J Tribol 116:470–478

    Article  Google Scholar 

  12. Bolander NW, Steenwyk BD, Sadeghi F, Gerber GR (2005) Lubrication regime transitions at the piston ring–cylinder liner interface. Proc Instn Mech Engrs Part J: J Engg Tribol 129:19–31

    Article  Google Scholar 

  13. Patir N, Cheng HS (1979) Application of average flow model to lubrication between rough sliding surfaces. Trans ASME J Lub Technol 101:221–230

    Google Scholar 

  14. Rahnejat H, Balakrishnan S, King PD, Howell-Smith S (2006) In-cylinder friction reduction using a surface finish optimization technique. Proc Instn Mech Engrs Part D: J Automobile Engg 220:1309–1318

    Article  Google Scholar 

  15. Furuhama, S, Sasaki S (1983) New device for the measurement of piston frictional forces in small engines. SAE technical paper 831284

  16. Akalin O, Newaz GM (2001) Piston ring cylinder bore friction modeling in mixed lubrication regime: part. II—correlation between bench test data. Trans ASME J Tribol 123:219–223

    Article  Google Scholar 

  17. Greenwood JA, Tripp JH (1971) The contact of two nominally flat surfaces. Proc Instn Mech Engrs Part C: J Mech Engg Sci 185:625–633

    Article  Google Scholar 

  18. Mishra PC, Rahnejat H, King PD (2010) Transient thermo-elastohydrohynamics of rough piston ring conjunction. In: Rahnejat H (ed) Tribology and dynamics of engine power train and application. Woodhead publishing, Cambridge. ISBN-13: 978 1 84569

  19. Mishra PC, Pandey RK, Athre K (2007) Temperature profile of an elliptic bore journal bearing. Tribol Int 40:453–458

    Article  Google Scholar 

  20. Mishra PC (2007) Thermal analysis of elliptic bore journal bearing. Tribol Trans 50:137–144

    Article  Google Scholar 

  21. Jang JY, Chang CC (1988) Adiabatic analysis of finite width journal bearing with non-Newtonian lubricant. Wear 122:63–75

    Article  Google Scholar 

  22. Crook AW (1958) The lubrication of rollers: part I. Phil Trans (A) 250:387–409

    Article  Google Scholar 

  23. Crook AW (1961) The lubrication of rollers: part II: film thickness with relation to viscosity and speed. Phil Trans (A) 254:223–236

    Article  Google Scholar 

  24. Crook AW (1961) The lubrication of rollers: part III: a theoretical discussion of friction and the temperatures in the oil film. Phil Trans (A) 254:237–258

    Article  Google Scholar 

  25. Khonsari MM (1987) A review of thermal effects in hydrodynamic bearings part I: slider and thrust bearings. Tribol Trans 30(1):19–25

    Google Scholar 

  26. Khonsari MM (1987) A review of thermal effects in hydrodynamic bearings part II: journal bearings. Tribol Trans 30(1):26–33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Chandra Mishra.

Appendix

Appendix

The flow factors in any location are 3-D parameters. They are based on the Stribeck’s oil film parameter. The following flow factors are used in Reynolds Eq. (9):

$$ {\text{Pressure flow factor}}:{\phi_{\text{p}}} = \left\{ {\matrix{ {1 - {C_{{{\phi_x}}}}{e^{{ - {r_{{{\phi_x}}}}{\lambda_{\text{rk}}}}}}} \hfill &{{\text{for}}\;{\gamma_{\text{c}}} \leqslant 1} \hfill \\ {1 + {C_{{{\phi_x}}}}{e^{{ - {r_{{{\phi_x}}}}{\lambda_{\text{rk}}}}}}} \hfill &{{\text{for}}\;{\gamma_{\text{c}}} > 1} \hfill \\ }<!end array> } \right\} $$
(21)
$$ {\text{Shear flow factor}}:{\phi_{\text{s}}} = \left\{ {\matrix{ {{A_{{1\left( {{\phi_{\text{s}}}} \right)}}}{\lambda_{\text{rk}}}^{{{\alpha_{{1\left( {{\phi_{\text{s}}}} \right)}}}}}{e^{{ - {\alpha_{{2\left( {{\phi_{\text{s}}}} \right)}}}\lambda + {\alpha_{{3\left( {{\phi_{\text{s}}}} \right)}}}{\lambda^2}}}}} \hfill &{{\lambda_{\text{rk}}} \leqslant 5} \hfill \\ {{A_{{2\left( {{\phi_{\text{s}}}} \right)}}}{e^{{ - 0.25{\lambda_{\text{rk}}}}}}} \hfill &{{\lambda_{\text{rk}}} > 5} \hfill \\ }<!end array> } \right\} $$
(22)
$$ {\text{Geometric flow factor}}:{\phi_{\text{g}}} = \frac{1}{{6\sqrt {{{\lambda_{\text{rk}}}}} }} + \frac{1}{2} + \frac{{{\lambda_{\text{rk}}}}}{{2\sqrt {6} }} + \frac{{{\lambda_{\text{rk}}}^2}}{{36}} $$
(23)

The following flow factors are used in the shear stress Eq. (10):

Pressure-induced flow factor: \( {\phi_{\text{fp}}} = 1 - {D_{{\left( {{\phi_{\text{fp}}}} \right)}}}{e^{{ - {s_{{\left( {{\phi_{\text{fp}}}} \right)}}}{\lambda_{\text{rk}}}}}} \)

Shear-induced flow factor:

\( {\phi_{\text{fs}}} = \left\{ {\matrix{ {{A_{{3\left( {{\phi_{\text{fs}}}} \right)}}}{\lambda_{{rk}}}^{{{\alpha_{{4\left( {{\phi_{\text{fs}}}} \right)}}}}}{e^{{ - {\alpha_{{5\left( {{\phi_{{_{\text{fs}}}}}} \right)}}}{\lambda_{{rk}}} + {\alpha_{{6\left( {{\phi_{\text{fs}}}} \right)}}}{\lambda_{\text{rk}}}^2}}}} \hfill &{{\text{for}}\;0.5 < {\lambda_{\text{rk}}} < 7.0} \hfill \\ 0 \hfill &{{\text{for}}\;{\lambda_{\text{rk}}} > 7.0} \hfill \\ }<!end array> } \right\} \)

And for topographical flow factor, the following holds:for \( {\lambda_{\text{rk}}} \leqslant 3,{\phi_{\text{fg}}} = \frac{{35}}{{32}}\varsigma \left\{ {{{\left( {1 - \varsigma } \right)}^3}\ln \frac{{\varsigma + 1}}{{{ \in^{*}}}} + \frac{1}{{60}}\left[ { - 55 + \varsigma \left( {\varsigma \left( {132 + \varsigma \left( {345 + \varsigma \left( { - 160 + \varsigma \left( { - 405 + \varsigma \left( {60 + 147\varsigma } \right)} \right)} \right)} \right)} \right)} \right)} \right]} \right\} \) and for \( {\lambda_{\text{rk}}} > 3 \),

$$ {\phi_{\text{fg}}} = \frac{{35}}{{32}}\varsigma \left\{ {{{\left( {1 - {\varsigma^2}} \right)}^3}\ln \frac{{\varsigma + 1}}{{\varsigma - 1}} + \frac{\varsigma }{{15}}\left[ {66 + {\varsigma^2}\left( {30{\varsigma^2} - 80} \right)} \right]} \right\} $$

where \( {\lambda_{\text{rk}}} = \frac{h}{{{R_{\text{k}}}}},\varsigma = \frac{{{\lambda_{\text{rk}}}}}{3},{ \in^{*}} = \frac{ \in }{{3{R_{\text{k}}}}},{\text{and}}\; \in = \frac{{{R_{\text{k}}}}}{{100}}. \)

All the constants used in the above flow factors are taken from Patir and Cheng [13] for an isotropic surface.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, P.C. Tribodynamic modeling of piston compression ring and cylinder liner conjunction in high-pressure zone of engine cycle. Int J Adv Manuf Technol 66, 1075–1085 (2013). https://doi.org/10.1007/s00170-012-4390-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4390-y

Keywords

Navigation