Skip to main content
Log in

Two-dimensional pheromone propagation controller applied to run-to-run control for semiconductor manufacturing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a new perspective on process control, called the two-dimensional pheromone propagation controller (2D-PPC), which considers the spatial information about disturbances of the process within a wafer to generate new predicted intercepts of the models for the subsequent use in time–effect controller (the exponentially weighted moving average, EWMA, in this study). The 2D-PPC assumes that the disturbances have their own behavior and affect others nearby in a wafer at a run; thus, it involves the “space-effect” among disturbances of the process at measurement positions within a wafer. The framework of the space–time controller (STC), which interlaces the time–effect controller and the space–effect 2D-PPC is constructed, and the stability analysis and intrinsic characteristics of the STC are discussed. Simulations are conducted using two-dimensional anthropogenic disturbances generated from fabrication data. The results show that the STC has better performance as compared to the conventional time–effect controllers. From implementation view point, since STC does not change the original code of time–effect controller, it can be easily implemented in the current process control loop by only adding an additional space-effect controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sachs E, Hu A, Ingolfsson A (1995) Run by run control: combining SPC and feedback control. IEEE Trans Semi Manuf 8:26–43

    Article  Google Scholar 

  2. Ingolfsson A, Sachs E (1993) Stability and sensitivity of an EWMA controller. J Qual Technol 25(4):271–287

    Google Scholar 

  3. Smith T, Boning D (1997) A self-tuning EWMA controller utilizing artificial neural network function approximation techniques. IEEE Trans Comput Packag Manuf Technol C 20:121–132

    Article  Google Scholar 

  4. Patel NS, Jenkins ST (2000) Adaptive optimization of RtR controllers: the EWMA example. IEEE Trans Semicond Manuf 13:97–107

    Article  Google Scholar 

  5. Castillo ED (2001) Some properties of EWMA feedback quality adjustment schemes for drifting disturbances. J Qual Technol 33(2):153–166

    Google Scholar 

  6. Hsu CC, Su CT (2004) A neural network-based adaptive algorithm on the single EWMA controller. Int J Adv Manuf Technol 23(7–8):586–593

    Article  Google Scholar 

  7. Epprecht EK, Simões BFT, Mendes FCT (2010) A variable sampling interval EWMA chart for attributes. Int J Adv Manuf Technol 49(1–4):281–292

    Article  Google Scholar 

  8. Wu CF, Hung CM, Chen JH, Lee AC (2008) Advanced process control of the critical dimension in photolithography. Int J Precis Eng Manuf 9:12–18

    Google Scholar 

  9. Bulter SW, Stefani JA (1994) Supervisory RtR control of polysilicon gate etch using in situ ellipsometry. IEEE Trans Semi Manuf 7:193–201

    Article  Google Scholar 

  10. Castillo ED (1999) Long run and transient analysis of a double EWMA feedback controller. IIE Trans 31(12):1157–1169

    Google Scholar 

  11. Chen A, Guo RS (2001) Age-based double EWMA controller and its application to CMP processes. IEEE Trans Semi Manuf 14(1):11–19

    Article  MathSciNet  MATH  Google Scholar 

  12. Su CT, Hsu CC (2004) A time-varying weights tuning method of the double EWMA controller. Omega 32:473–480

    Article  Google Scholar 

  13. Tseng ST, Hsu NJ (2005) Sample-size determination for achieving asymptotic stability of a double EWMA control scheme. IEEE Trans Semicond Manuf 18:104–111

    Article  Google Scholar 

  14. Tseng ST, Song W, Chang YC (2005) An initial intercept iteratively adjusted (IIIA) controller: an enhanced double EWMA feedback control scheme. IEEE Trans Semicond Manuf 18(3):448–457

    Article  Google Scholar 

  15. Lee AC, Pan YR, Hsieh MT (2011) Output disturbance observer structure applied to run-to-run control for semiconductor manufacturing. IEEE Trans Semicond Manuf 24:27–43

    Article  Google Scholar 

  16. Wang XA, Mahajan RL (1996) Artificial neural network model-based RtR process controller. IEEE Trans CPMT—Part C 19(1):19–26

    Google Scholar 

  17. Wang GJ, Yu CH (2006) Developing a neural network-based RtR process controller for chemical-mechanical planarization. Int J Adv Manuf Technol 28(9–10):899–908

    Article  Google Scholar 

  18. Wang GJ, Lin BS, Chang KJ (2007) In-situ neural network process controller for copper chemical mechanical polishing. Int J Adv Manuf Technol 32(1–2):42–54

    Google Scholar 

  19. Wang J, He QP, Qin SJ, Bode CA, Purdy MA (2005) Recursive least square estimation for RtR control with metrology delay and its application to STI etch process. IEEE Trans Semicond Manuf 18:309–319

    Article  MATH  Google Scholar 

  20. Chen JH, Kuo TW, Chen TC (2008) Advanced process control of metal sputter deposition using a time series analysis. Int J Adv Manuf Technol 36(5–6):501–509

    Article  Google Scholar 

  21. Chen JH, Kuo TW, Lee AC (2007) Run-by-run process control of metal sputter deposition: combining time series and extended Kalman filter. IEEE Trans Semicond Manuf 20:278–285

    Article  Google Scholar 

  22. Lee DS, Lee AC (2009) Pheromone propagation controller: the linkage of swarm intelligence and advanced process control. IEEE Trans Semicond Manuf 22(3):357–372

    Article  Google Scholar 

  23. Stefani JA, Poarch S, Saxena S, Mozumder P (1996) Advanced process control of a CVD tungsten reactor. IEEE Trans Semicond Manuf 9:366–383

    Article  Google Scholar 

  24. Yang L, Sheu SH (2006) Integrating multivariate engineering process control and multivariate statistical process control. Int J Adv Manuf Technol 29(1–2):129–136

    Article  Google Scholar 

  25. Tseng ST, Chou RJ, Lee SP (2002) A study on a multivariate EWMA controller. IIE Trans 34:541–549

    Google Scholar 

  26. Good RP, Qin SJ (2006) On the stability of MIMO EWMA RtR controllers with metrology delay. IEEE Trans Semicond Manuf 19(1):78–86

    Article  Google Scholar 

  27. Tseng ST, Tsung F, Wu CD (2008) A variable multivariate EWMA controller for run-by-run process adjustment. J Chinese Stat Assoc 46:81–105

    Google Scholar 

  28. Castillo ED, Rajagopal R (2002) A multivariate double EWMA process adjustment scheme for drifting processes. IIE Trans 34:1055–1068

    Article  Google Scholar 

  29. Brueckner S (2000) Return from the ant: synthetic ecosystems for manufacturing control, Ph.D. dissertation, Humboldt University of Berlin

  30. Nagy B (2003) Shortest paths in triangular grids with neighbourhood sequences. J Comput Inf Technol 11:111–122

    Article  Google Scholar 

  31. Teixeira MCM, Marchesi HF, Assuncao E (2001) Signal-flow graphs: direct method of reduction and MATLAB implementation. IEEE Trans Educat 44(2):185–190

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Chen Lee.

Appendices

Appendix A

To overcome the end effect of the transition function [22], we modify the propagation-out ratio at the frontier points from \( {{{{F_2}}} \left/ {{\left( {2 - {F_2}} \right)}} \right.} \) [22] to Γ. Without loss of generality, this study takes the shape of the two-dimensional pheromone basket is shown as Fig. 2 and R 2 (k, 0) is the 12 × 1 matrix of 1s as an example. The transition functions are

$$ {q_2}\left( {k,{b_{{{m_2}}}},i + 1} \right) = \left\{ {\matrix{ {\frac{{{F_2}}}{3}\left( {{r_2}\left( {k,{b_{{{m_2} + 6}}},i} \right) + {q_2}\left( {k,{b_{{{m_2} + 6}}},i} \right)} \right),} \hfill &{{\text{if}}\,{m_2} = 1,2, \ldots, 6} \hfill \\ {\Gamma \left( {{r_2}\left( {k,{b_{{{m_2} - 6}}},i} \right) + {q_2}\left( {k,{b_{{{m_2} - 6}}},i} \right)} \right) + \frac{{{F_2}}}{3}\left( {{r_2}\left( {k,{b_{{{m_2} + 1}}},i} \right) + {q_2}\left( {k,{b_{{{m_2} + 1}}},i} \right)} \right)} \hfill &{} \hfill \\ { + \frac{{{F_2}}}{3}\left( {{r_2}\left( {k,{b_{{{m_2} - 1}}},i} \right) + {q_2}\left( {k,{b_{{{m_2} - 1}}},i} \right)} \right),} \hfill &{{\text{if}}\,{m_2} = 8,9, \ldots, 11} \hfill \\ {\Gamma \left( {{r_2}\left( {k,{b_{{{m_2} - 6}}},i} \right) + {q_2}\left( {k,{b_{{{m_2} - 6}}},i} \right)} \right) + \frac{{{F_2}}}{3}\left( {{r_2}\left( {k,{b_{{{m_2} + 1}}},i} \right) + {q_2}\left( {k,{b_{{{m_2} + 1}}},i} \right)} \right)} \hfill &{} \hfill \\ { + \frac{{{F_2}}}{3}\left( {{r_2}\left( {k,{b_{{12}}},i} \right) + {q_2}\left( {k,{b_{{12}}},i} \right)} \right),} \hfill &{{\text{if}}\,{m_2} = 7} \hfill \\ {\Gamma \left( {{r_2}\left( {k,{b_{{{m_2} - 6}}},i} \right) + {q_2}\left( {k,{b_{{{m_2} - 6}}},i} \right)} \right) + \frac{{{F_2}}}{3}\left( {{r_2}\left( {k,{b_7},i} \right) + {q_2}\left( {k,{b_7},i} \right)} \right)} \hfill &{} \hfill \\ { + \frac{{{F_2}}}{3}\left( {{r_2}\left( {k,{b_{{{m_2} - 1}}},i} \right) + {q_2}\left( {k,{b_{{{m_2} - 1}}},i} \right)} \right),} \hfill &{{\text{if}}\,{m_2} = 12} \hfill \\ }<!end array> } \right. $$
(A.1)
$$ {s_2}\left( {k,{b_{{{m_2}}}},i + 1} \right) = \left\{ {\matrix{ {{s_2}\left( {k,{b_{{{m_2}}}},i} \right) + \left( {1 - \Gamma } \right)\left( {{r_2}\left( {k,{b_{{{m_2}}}},i} \right) + {q_2}\left( {k,{b_{{{m_2}}}},i} \right)} \right),} \hfill &{{\text{if }}{m_2} = 1,{2,}...{6}} \hfill \\ {{s_2}\left( {k,{b_{{{m_2}}}},i} \right) + \left( {1 - {F_2}} \right)\left( {{r_2}\left( {k,{b_{{{m_2}}}},i} \right) + {q_2}\left( {k,{b_{{{m_2}}}},i} \right)} \right),} \hfill &{{\text{if }}{m_2} = 7,8,...,12} \hfill \\ }<!end array> } \right. $$
(A.2)

Next, Eq. (A.2) can be rewrote as

$$ \left[ {\matrix{ {{{{\bf Q}}_{{{\bf 2}}}}\left( {k,i + {1}} \right)} \\ {{{{\bf S}}_{{{\bf 2}}}}\left( {k,i + {1}} \right)} \\ }<!end array> } \right] = \left[ {\matrix{ {{{{\bf T}}_{{{{\bf 11}}}}}} &{{{{\bf T}}_{{{{\bf 12}}}}}} \\ {{{{\bf T}}_{{{{\bf 21}}}}}} &{{{{\bf T}}_{{{{\bf 22}}}}}} \\ }<!end array> } \right]\left[ {\matrix{ {{{{\bf Q}}_{{{\bf 2}}}}\left( {k{,}i} \right)} \\ {{{{\bf S}}_{{{\bf 2}}}}\left( {k{,}i} \right)} \\ }<!end array> } \right] + \left[ {\matrix{ {{{{\bf U}}_{{{{\bf 11}}}}}} &{{{{\bf U}}_{{{{\bf 12}}}}}} \\ {{{{\bf U}}_{{{{\bf 21}}}}}} &{{{{\bf U}}_{{{{\bf 22}}}}}} \\ }<!end array> } \right]\left[ {\matrix{ {{{{\bf R}}_{{{\bf 2}}}}\left( {k{,}i} \right)} \\ {{{{\bf R}}_{{{\bf 2}}}}\left( {k{,}i} \right)} \\ }<!end array> } \right], $$
(A.3)

where

$$ \begin{array}{*{20}{c}} {{{{\mathbf{Q}}}_{2}}\left( {k,i} \right) = \left[ {\begin{array}{*{20}{c}} {{{q}_{2}}\left( {k,{{b}_{1}},i} \right)} \\ {{{q}_{2}}\left( {k,{{b}_{2}},i} \right)} \\ \vdots \\ {{{q}_{2}}\left( {k,{{b}_{{12}}},i} \right)} \\ \end{array} } \right],} \hfill & {{{{\mathbf{S}}}_{2}}\left( {k,i} \right) = \left[ {\begin{array}{*{20}{c}} {{{s}_{2}}\left( {k,{{b}_{1}},i} \right)} \\ {{{s}_{2}}\left( {k,{{b}_{2}},i} \right)} \\ \vdots \\ {{{s}_{2}}\left( {k,{{b}_{{12}}},i} \right)} \\ \end{array} } \right],} \hfill & {{{{\mathbf{R}}}_{2}}\left( {k,i} \right) = \left[ {\begin{array}{*{20}{c}} {{{r}_{2}}\left( {k,{{b}_{1}},i} \right)} \\ {{{r}_{2}}\left( {k,{{b}_{2}},i} \right)} \\ \vdots \\ {{{r}_{2}}\left( {k,{{b}_{{12}}},i} \right)} \\ \end{array} } \right]} \hfill \\ \end{array} , $$
$$ {{{\mathbf{T}}}_{{11}}} = \left[ {\begin{array}{*{20}{c}} 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} \\ \Gamma & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} \\ 0 & \Gamma & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & 0 & 0 \\ 0 & 0 & \Gamma & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & 0 \\ 0 & 0 & 0 & \Gamma & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 \\ 0 & 0 & 0 & 0 & \Gamma & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & {\frac{{{{F}_{2}}}}{3}} \\ 0 & 0 & 0 & 0 & 0 & \Gamma & {\frac{{{{F}_{2}}}}{3}} & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 \\ \end{array} } \right],\,{{{\mathbf{T}}}_{{12}}} = {{0}_{{12 \times 12}}}, $$
$$ \begin{array}{*{20}{c}} {{{{\mathbf{T}}}_{{21}}} = \left[ {\begin{array}{*{20}{c}} {1 - \Gamma } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & {1 - \Gamma } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {1 - \Gamma } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {1 - \Gamma } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {1 - \Gamma } & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & {1 - \Gamma } & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {1 - {{F}_{2}}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & {1 - {{F}_{2}}} & 0 & 0 & {} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {1 - {{F}_{2}}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {1 - {{F}_{2}}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {1 - {{F}_{2}}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {1 - {{F}_{2}}} \\ \end{array} } \right],} \\ {{{{\mathbf{T}}}_{{22}}} = {{{\mathbf{I}}}_{{12 \times 12}}},\,{{{\mathbf{U}}}_{{11}}} = {{{\mathbf{T}}}_{{11}}},\,{{{\mathbf{U}}}_{{12}}} = {{0}_{{12 \times 12}}},\,{{{\mathbf{U}}}_{{21}}} = {{0}_{{12 \times 12}}},\,{\text{and}}\,{{{\mathbf{U}}}_{{22}}} = {{{\mathbf{T}}}_{{21}}}.} \\ \end{array} $$

The final propagation result of V 12×1 (k) obtained from Eq. (A.8) in the Appendix B must be the 12 × 1 matrix of ones.

$$ {{{\bf V}}_{{{{\bf 12}} \times {{\bf 1}}}}}(k) = \left[ {\matrix{ {{v_1}(k)} \\ {{v_2}(k)} \\ {{v_3}(k)} \\ {{v_4}(k)} \\ {{v_5}(k)} \\ {{v_6}(k)} \\ {{v_7}(k)} \\ {{v_8}(k)} \\ {{v_9}(k)} \\ {{v_{{10}}}(k)} \\ {{v_{{11}}}(k)} \\ {{v_{{12}}}(k)} \\ }<!end array> } \right] = \frac{1}{{2{F_2} + \Gamma {F_2} - 3}}\left[ {\matrix{ {\left( {1 - \Gamma } \right)\left( {{F_2} - 3} \right)} \\ {\left( {1 - \Gamma } \right)\left( {{F_2} - 3} \right)} \\ {\left( {1 - \Gamma } \right)\left( {{F_2} - 3} \right)} \\ {\left( {1 - \Gamma } \right)\left( {{F_2} - 3} \right)} \\ {\left( {1 - \Gamma } \right)\left( {{F_2} - 3} \right)} \\ {\left( {1 - \Gamma } \right)\left( {{F_2} - 3} \right)} \\ {3\left( {1 + \Gamma } \right)\left( {{F_2} - 1} \right)} \\ {3\left( {1 + \Gamma } \right)\left( {{F_2} - 1} \right)} \\ {3\left( {1 + \Gamma } \right)\left( {{F_2} - 1} \right)} \\ {3\left( {1 + \Gamma } \right)\left( {{F_2} - 1} \right)} \\ {3\left( {1 + \Gamma } \right)\left( {{F_2} - 1} \right)} \\ {3\left( {1 + \Gamma } \right)\left( {{F_2} - 1} \right)} \\ }<!end array> } \right] = \left[ {\matrix{ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ }<!end array> } \right] $$
(A.4)

Solving Eq. (A.4) yields,

$$ \Gamma = \frac{{{F_2}}}{{3 - 2{F_2}}} $$
(A.5)

Relatively, when R 2 (k, 0) is the 12 × 1 matrix of ones, Eq. (A.8) becomes

$$ \mathop{{\lim }}\limits_{{{\text{z}} \to 1}} \left( {{\text{z}} - 1} \right){\text Z}\left\{ {{{{\bf H}}_{{{\bf 2}}}}\left( {k,i} \right)} \right\} = \mathop{{\lim }}\limits_{{{\text{z}} \to 1}} \left( {{\text{z}} - 1} \right){\left( {{\text{z}}{{\bf I}} - {{\bf T}}} \right)^{{ - 1}}}{{\bf U}}{{{\bf I}}_{{{{\bf 24}} \times {{\bf 1}}}}} = \left[ {\matrix{ {{{{\bf 0}}_{{{{\bf 12}} \times {{\bf 1}}}}}} \\ {{{{\bf 1}}_{{{{\bf 12}} \times {{\bf 1}}}}}} \\ }<!end array> } \right]. $$
(A.6)

Equation (A.6) shows that the final propagation result S 2 (k, ∞) is also a 12 × 1 matrix of ones. Thus, the modified transition functions not only obey the energy balance law but also avoid the end effect.

Appendix B

Because states Q 2 (k, i) and S 2 (k, i) are updated simultaneously, the transition functions can be rewritten in matrix form:

$$ \left[ {\matrix{ {{{{\bf Q}}_{{{\bf 2}}}}\left( {k,i + {1}} \right)} \\ {{{{\bf S}}_{{{\bf 2}}}}\left( {k,i + {1}} \right)} \\ }<!end array> } \right] = \left[ {\matrix{ {{{{\bf T}}_{{{{\bf 11}}}}}} &{{{{\bf T}}_{{{{\bf 12}}}}}} \\ {{{{\bf T}}_{{{{\bf 21}}}}}} &{{{{\bf T}}_{{{{\bf 22}}}}}} \\ }<!end array> } \right]\left[ {\matrix{ {{{{\bf Q}}_{{{\bf 2}}}}\left( {k{,}i} \right)} \\ {{{{\bf S}}_{{{\bf 2}}}}\left( {k{,}i} \right)} \\ }<!end array> } \right] + \left[ {\matrix{ {{{{\bf U}}_{{{{\bf 11}}}}}} &{{{{\bf U}}_{{{{\bf 12}}}}}} \\ {{{{\bf U}}_{{{{\bf 21}}}}}} &{{{{\bf U}}_{{{{\bf 22}}}}}} \\ }<!end array> } \right]\left[ {\matrix{ {{{{\bf R}}_{{{\bf 2}}}}\left( {k{,}i} \right)} \\ {{{{\bf R}}_{{{\bf 2}}}}\left( {k{,}i} \right)} \\ }<!end array> } \right], $$
(A.7)

where

$$ \begin{array}{*{20}{c}} {{{{\mathbf{Q}}}_{2}}\left( {k,i} \right) = \left[ {\begin{array}{*{20}{c}} {{{q}_{2}}\left( {k,{{b}_{1}},i} \right)} \\ {{{q}_{2}}\left( {k,{{b}_{2}},i} \right)} \\ \vdots \\ {{{q}_{2}}\left( {k,{{b}_{{12}}},i} \right)} \\ \end{array} } \right],} \hfill & {{{{\mathbf{S}}}_{2}}\left( {k,i} \right) = \left[ {\begin{array}{*{20}{c}} {{{s}_{2}}\left( {k,{{b}_{1}},i} \right)} \\ {{{s}_{2}}\left( {k,{{b}_{2}},i} \right)} \\ \vdots \\ {{{s}_{2}}\left( {k,{{b}_{{12}}},i} \right)} \\ \end{array} } \right],} \hfill & {{{{\mathbf{R}}}_{2}}\left( {k,i} \right) = \left[ {\begin{array}{*{20}{c}} {{{r}_{2}}\left( {k,{{b}_{1}},i} \right)} \\ {{{r}_{2}}\left( {k,{{b}_{2}},i} \right)} \\ \vdots \\ {{{r}_{2}}\left( {k,{{b}_{{12}}},i} \right)} \\ \end{array} } \right]} \hfill \\ \end{array} , $$
$$ {{{\mathbf{T}}}_{{11}}} = \left[ {\begin{array}{*{20}{c}} 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} \\ {\frac{{{{F}_{2}}}}{{3 - 2{{F}_{2}}}}} & 0 & 0 & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} \\ 0 & {\frac{{{{F}_{2}}}}{{3 - 2{{F}_{2}}}}} & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & 0 & 0 \\ 0 & 0 & {\frac{{{{F}_{2}}}}{{3 - 2{{F}_{2}}}}} & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & 0 \\ 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{{3 - 2{{F}_{2}}}}} & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 \\ 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{{3 - 2{{F}_{2}}}}} & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 & {\frac{{{{F}_{2}}}}{3}} \\ 0 & 0 & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{{3 - 2{{F}_{2}}}}} & {\frac{{{{F}_{2}}}}{3}} & 0 & 0 & 0 & {\frac{{{{F}_{2}}}}{3}} & 0 \\ \end{array} } \right],\,{{{\mathbf{T}}}_{{12}}} = {{0}_{{12 \times 12}}}, $$
$$ \begin{array}{*{20}{c}} {{{{\mathbf{T}}}_{{21}}} = \left[ {\begin{array}{*{20}{c}} {\frac{{3\left( {1 - {{F}_{2}}} \right)}}{{3 - 2{{F}_{2}}}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & {\frac{{3\left( {1 - {{F}_{2}}} \right)}}{{3 - 2{{F}_{2}}}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {\frac{{3\left( {1 - {{F}_{2}}} \right)}}{{3 - 2{{F}_{2}}}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {\frac{{3\left( {1 - {{F}_{2}}} \right)}}{{3 - 2{{F}_{2}}}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {\frac{{3\left( {1 - {{F}_{2}}} \right)}}{{3 - 2{{F}_{2}}}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & {\frac{{3\left( {1 - {{F}_{2}}} \right)}}{{3 - 2{{F}_{2}}}}} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {1 - {{F}_{2}}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & {1 - {{F}_{2}}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {1 - {{F}_{2}}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {1 - {{F}_{2}}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {1 - {{F}_{2}}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {1 - {{F}_{2}}} \\ \end{array} } \right],} \\ {{{{\mathbf{T}}}_{{22}}} = {{{\mathbf{I}}}_{{12 \times 12}}},\,{{{\mathbf{U}}}_{{11}}} = {{{\mathbf{T}}}_{{11}}},\,{{{\mathbf{U}}}_{{12}}} = {{0}_{{12 \times 12}}},\,{{{\mathbf{U}}}_{{21}}} = {{0}_{{12 \times 12}}}\,{\text{and}}\,{{{\mathbf{U}}}_{{22}}} = {{{\mathbf{T}}}_{{21}}}.} \\ \end{array} $$

In Eq. (A.7), Q 2 (k, ∞) and S 2 (k, ∞) can be obtained with the z-transform and the final value theorem

$$ \begin{array}{*{20}{c}} {{{{\mathbf{H}}}_{2}}\left( {k,\infty } \right) = \mathop{{\lim }}\limits_{{{\text{z}} \to 1}} \left( {{\text{z}} - 1} \right){\rm Z}\left\{ {{{{\mathbf{H}}}_{2}}\left( {k,i} \right)} \right\}} \\ { = \mathop{{\lim }}\limits_{{{\text{z}} \to 1}} \left( {{\text{z}} - 1} \right){{{\left( {{\text{z}}{\mathbf{I}} - {\mathbf{T}}} \right)}}^{{ - 1}}}{\mathbf{U}}\left[ {\begin{array}{*{20}{c}} {{{{\mathbf{R}}}_{2}}\left( {k,i} \right)} \\ {{{{\mathbf{R}}}_{2}}\left( {k,i} \right)} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}{c}} {{{0}_{{12 \times 1}}}} \\ {{{{\mathbf{V}}}_{{12 \times 1}}}\left( k \right)} \\ \end{array} } \right]} \\ \end{array} . $$
(A.8)

where \( {{{\bf H}}_{{{\bf 2}}}}\left( {k,i} \right) = \left[ {\matrix{ {{{{\bf Q}}_{{{\bf 2}}}}\left( {k,i} \right)} \\ {{{{\bf S}}_{{{\bf 2}}}}\left( {k,i} \right)} \\ }<!end array> } \right] \), \( {{\bf T}} = \left[ {\matrix{ {{{{\bf T}}_{{{{\bf 11}}}}}} &{{{{\bf T}}_{{{{\bf 12}}}}}} \\ {{{{\bf T}}_{{{{\bf 21}}}}}} &{{{{\bf T}}_{{{{\bf 22}}}}}} \\ }<!end array> } \right] \), \( {{\bf U}} = \left[ {\matrix{ {{{{\bf U}}_{{{{\bf 11}}}}}} &{{{{\bf U}}_{{{{\bf 12}}}}}} \\ {{{{\bf U}}_{{{{\bf 21}}}}}} &{{{{\bf U}}_{{{{\bf 22}}}}}} \\ }<!end array> } \right] \) and \( {{{\bf V}}_{{{{\bf 12}} \times {{\bf 1}}}}}(k) = {\left[ {\matrix{ {{v_1}(k)} & \cdots &{{v_{{{12}}}}(k)} \\ }<!end array> } \right]^{\text{T}}} \). Note Q 2 (k, ∞) in Eq. (A.8) will converge to the matrix of 0 and S 2 (k, ∞) will converge to V 12 × 1 (k). In addition, the z-transform of the external input Z{R 2 (k, i)} is equal to R 2 (k, 0) since R 2(k, i) is an impulse at i = 0 by definition in Section 2.1. Thus, V 12×1 (k) is a function of F 2 and R 2 (k, 0) for a specific M 2. The final propagation results can be obtained analytically using Eq. (A.8).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, DS., Lee, AC. Two-dimensional pheromone propagation controller applied to run-to-run control for semiconductor manufacturing. Int J Adv Manuf Technol 66, 917–936 (2013). https://doi.org/10.1007/s00170-012-4377-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4377-8

Keywords

Navigation