Skip to main content
Log in

Predicting electroless Ni–Co–P coating using response surface method

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Electroless Ni–Co–P coating has been studied considering pure copper (99.99 %) as a substrate material. The deposited mass per unit area of the substrate has been considered as the response variable. The individual as well as combined effects of the process parameters on the response variable has been studied. The bath temperature and the interaction of cobalt source concentration and reducing agent concentration have been found to be significant through regression analysis and Student's t test. Mathematical modelling has been carried out using a second-order response surface model with central composite design to take into account the effect of curvature in the predicted response. The equation for response surface has been determined using MATLAB software package. The response surface plots show that the rate of deposition increases significantly with the rise in temperature while the cobalt source concentration and reducing agent concentration have an interactive effect which influences the rate of deposition. The test of reliability for the predicting response surface equation shows that the equation gives an excellent fitting to the observed values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riedel W (1991) Electroless nickel plating. Cambridge Scientific Abstracts, Finishing Publications Ltd.

  2. Brenner A, Riddell GE (1946) J Res NBS 37(1):31

    Google Scholar 

  3. Mallory GO, Horn TR (1979) Plat Surf Finish 66:40

    Google Scholar 

  4. Osaka T, Homma T, Saito K, Takekoshi A, Yamazaki Y, Nakikawa T (1992) J Electrochem Soc 139:1311

    Article  Google Scholar 

  5. Li J, Hu X, Wang D (1996) Plat Surf Finish 83:62

    Google Scholar 

  6. Osaka T (1999) Electrochim Acta 44:3885

    Article  Google Scholar 

  7. Armyanov SA, Sotirova GS (1989) J Electrochem Soc 136(5):1575

    Article  Google Scholar 

  8. Sankara Narayanan TSN, Selvakumar S, Stephen A (2003) Surf Coat Technol 172:298–307

    Article  Google Scholar 

  9. Abdel Aal A, Shaaban A, Abdel Hamid Z (2008) Appl Surf Sci 254:1966–1971

    Article  Google Scholar 

  10. Gao Y, Huang L, Zheng ZJ, Li H, Zhu M (2007) Appl Surf Sci 253:9470–9475

    Article  Google Scholar 

  11. Liu WL, Chen WJ, Tsai TK, Hsieh SH, Chang SY (2007) Appl Surf Sci 253:3843–3848

    Article  Google Scholar 

  12. Liu WL, Hsieh SH, Chen WJ, Hsu YC (2009) Appl Surf Sci 255:3880–3883

    Article  Google Scholar 

  13. Ye M, Xie T, He B, Wu Y, Meng G, Zhang L (2009) Chin J Chem Phys 22:411–416

  14. Huang Y, Shi K, Liao Z, Wang Y, Wang L, Zhu F (2007) Mater Lett 61:1742–1746

    Article  Google Scholar 

  15. Younan MM, Aly IHM, Nageeb MT (2002) J Appl Electrochem 32:439–446

    Article  Google Scholar 

  16. Ma T, Ying H, Yan M (2009) Adv Mater Res 75:53–56

    Article  Google Scholar 

  17. Chivavibul P, Enoki M, Konda S, Inada Y, Tomizawa T, Toda A (2010) Adv Mater Res 117:21–25

    Article  Google Scholar 

  18. Aixiang Z, Weihao X, Jian X (2005) Mater Lett 59:524–528

    Article  Google Scholar 

  19. Pang J, Li Q, Wang W, Xu X, Zhai J (2011) Surf Coat Technol 205:4237–4242

    Article  Google Scholar 

  20. Li Y, Wang R, Qi F, Wang C (2008) Appl Surf Sci 254:4708–4715

    Article  Google Scholar 

  21. Oraon B, Majumdar G, Ghosh B (2006) Mater Des 27:1035–1045

    Article  Google Scholar 

  22. Choudhury BS, Sen RS, Oraon B, Majumdar G (2009) Surf Engg 25(5):410–414

    Google Scholar 

  23. Choudhury BS, Datta S, Sen RS, Oraon B, Majumdar G (2010) Int J Appl Eng Res 5(4):601–118, ISSN 0973–4562

    Google Scholar 

  24. Oraon B, Majumdar G, Ghosh B (2007) Mater Des 28:2138–2147

    Article  Google Scholar 

  25. Montgomery DC (1991) Design and analysis of experiments. Wiley, New York

    MATH  Google Scholar 

  26. Box GEP, Draper NR (1987) Empirical model building and response surfaces. Wiley, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Majumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, T., Sen, R.S., Oraon, B. et al. Predicting electroless Ni–Co–P coating using response surface method. Int J Adv Manuf Technol 64, 1729–1736 (2013). https://doi.org/10.1007/s00170-012-4136-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4136-x

Keywords

Navigation