Skip to main content
Log in

Comment on “Multiple cycle economic lot and delivery-scheduling problem in a two-echelon supply chain”

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper revisits the work-in process inventory formulation presented by Torabi and Jenabi which appeared in Int J Adv Manuf Technol (43:785–798, 2009, doi: 10.1007/s00170-008-1752-6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torabi S-A, Jenabi M (2009) Multiple cycle economic lot and delivery-scheduling problem in a two-echelon supply chain. Int J Adv Manuf Technol 43:785–798. doi:10.1007/s00170-008-1752-6

    Article  Google Scholar 

  2. Torabi S-A, Karimi B, Fatemi Ghomi S-M-T (2005) The common cycle economic lot scheduling in flexible job shops: the finite horizon case. Int J Prod Econ 97:52. doi:10.1016/j.ijpe.2004.05.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Prasetyo.

Appendix

Appendix

The average WIP inventories of product i between stage j − 1 and j are calculated by dividing the total of areas I, II, and III in Fig. 1 by the cycle time of product i (k i F).

From Fig. 1, we have

$$ v = {{b}_{{ij}}} - {{b}_{{i,j - 1}}} $$
(5)
$$ \matrix{ {w = {{t}_{{i,j - 1}}} - v} \hfill \\ {x = {{t}_{{ij}}} - w} \hfill \\ }<!end array> $$
(6)
$$ x = {{t}_{{ij}}} - {{t}_{{i,j - 1}}} + v $$
(7)
$$ \matrix{ {Y = v{{p}_{{i,j - 1}}}} \hfill \\ {Z = x{{p}_{{ij}}}} \hfill \\ }<!end array> $$
(8)
$$ Z = {{p}_{{ij}}}\left( {{{t}_{{ij}}} - {{t}_{{i,j - 1}}} + v} \right) $$
(9)

The total of areas I, II, and III is calculated as follows:

Area I (triangle 1)

$$ \matrix{ { = 0.5Yv} \hfill \\ { = 0.5{{p}_{{i,j - 1}}}{{{(v)}}^2}} \hfill \\ }<!end array> $$
(10)

Area II (trapezium)

$$ \matrix{ { = 0.5w\left( {Y + Z} \right)} \hfill \\ { = 0.5\left( {{{t}_{{i,j - 1}}} - v} \right)\left\lfloor {v{{p}_{{i,j - 1}}} + \left( {{{t}_{{ij}}} - {{t}_{{i,j - 1}}} + v} \right){{p}_{{ij}}}} \right\rfloor } \hfill \\ }<!end array> $$
(11)

Area III (triangle 2)

$$ \matrix{ { = 0.5Zx} \hfill \\ { = 0.5{{p}_{{ij}}}\left( {{{t}_{{ij}}} - {{t}_{{i,j - 1}}} + v} \right)\left( {{{t}_{{ij}}} - {{t}_{{i,j - 1}}} + v} \right)} \hfill \\ }<!end array> $$
(12)

The total of areas I, II, and III is obtained by summing Eqs. (10), (11), and (12) and is given by

$$ \begin{array}{*{20}{c}} { = 0.5{{p}_{{i,j - 1}}}{{{(v)}}^{2}} + 0.5\left( {{{t}_{{i,j - 1}}} - v} \right)\left[ {v{{p}_{{i,j - 1}}} + \left( {{{t}_{{ij}}} - {{t}_{{i,j - 1}}} + v} \right){{p}_{{ij}}}} \right] + 0.5{{p}_{{ij}}}\left( {{{t}_{{ij}}} - {{t}_{{i,j - 1}}} + v} \right)\left( {{{t}_{{ij}}} - {{t}_{{i,j - 1}}} + v} \right)} \\ { = 0.5\left[ {\begin{array}{*{20}{c}} {{{p}_{{i,j - 1}}}{{v}^{2}} + {{p}_{{i,j - 1}}}{{t}_{{i,j - 1}}}v + {{p}_{{ij}}}{{t}_{{ij}}}{{t}_{{i,j - 1}}} - {{p}_{{ij}}}{{{\left( {{{t}_{{i,j - 1}}}} \right)}}^{2}} + {{p}_{{ij}}}{{t}_{{i,j - 1}}}v - {{p}_{{i,j - 1}}}{{v}^{2}} - {{p}_{{ij}}}{{t}_{{ij}}}v + {{p}_{{ij}}}{{t}_{{i,j - 1}}}v - } \hfill \\ {{{p}_{{ij}}}{{v}^{2}} + {{p}_{{ij}}}{{{\left( {{{t}_{{ij}}}} \right)}}^{2}} - {{p}_{{ij}}}{{t}_{{ij}}}{{t}_{{i,j - 1}}} + {{p}_{{ij}}}{{t}_{{ij}}}v - {{p}_{{ij}}}{{t}_{{ij}}}{{t}_{{i,j - 1}}} + {{p}_{{ij}}}{{{\left( {{{t}_{{i,j - 1}}}} \right)}}^{2}} - {{p}_{{ij}}}{{t}_{{i,j - 1}}}v + {{p}_{{ij}}}{{t}_{{ij}}}v - {{p}_{{ij}}}{{t}_{{i,j - 1}}}v + } \hfill \\ {{{p}_{{ij}}}{{v}^{2}}} \hfill \\ \end{array} } \right]} \\ { = 0.5\left[ {{{p}_{{i,j - 1}}}{{t}_{{i,j - 1}}}v + {{p}_{{ij}}}{{{\left( {{{t}_{{ij}}}} \right)}}^{2}} - {{p}_{{ij}}}{{t}_{{ij}}}{{t}_{{i,j - 1}}} + {{p}_{{ij}}}{{t}_{{ij}}}v} \right]} \\ { = 0.5\left[ {{{p}_{{i,j - 1}}}{{t}_{{i,j - 1}}}v + {{p}_{{ij}}}{{t}_{{ij}}}\left( {{{t}_{{ij}}} - {{t}_{{i,j - 1}}} + v} \right)} \right].} \\ \end{array} $$
(13)

Note that t i,j − 1 and t ij are the production length at stage j − 1 and j, respectively. Those values can be obtained by dividing the demand over the cycle length (the demand rate (d i ) times the cycle time (k i F)) by the production rate at the corresponding stages.

$$ {{t}_{{i,j - 1}}} = {{d}_i}{{k}_i}F/{{p}_{{i,j - 1}}} $$
(14)
$$ {{t}_{{ij}}} = {{d}_i}{{k}_i}F/{{p}_{{ij}}} $$
(15)

Hence, substituting Eqs. (5), (14), and (15) to Eq. (13) yields

$$ \matrix{ { = 0.5\left[ {{{d}_i}{{k}_i}F\left( {{{b}_{{ij}}} - {{b}_{{i,j - 1}}}} \right) + {{d}_i}{{k}_i}F\left( {{{d}_i}{{k}_i}F/{{p}_{{ij}}} - {{d}_i}{{k}_i}F/{{p}_{{i,j - 1}}} + {{b}_{{ij}}} - {{b}_{{i,j - 1}}}} \right)} \right]} \hfill \\ { = 0.5\left[ {2{{d}_i}{{k}_i}F\left( {{{b}_{{ij}}} - {{b}_{{i,j - 1}}}} \right) + {{{\left( {{{d}_i}{{k}_i}F} \right)}}^2}\left( {1/{{p}_{{ij}}} - 1/{{p}_{{i,j - 1}}}} \right)} \right].} \hfill \\ }<!end array> $$
(16)

Dividing the total area in Eq. (16) by the cycle time (k i F) returns the average WIP between stage j − 1 and j which is expressed as in Eq. (17).

$$ {{I}_{{i,j - 1}}} = {{d}_i}\left[ {\left( {{{b}_{{ij}}} - {{b}_{{i,j - 1}}}} \right) + 0.5{{d}_i}{{k}_i}F\left( {1/{{p}_{{ij}}} - 1/{{p}_{{i,j - 1}}}} \right)} \right] $$
(17)

Hence, the WIP-holding cost between two stages for all items (n) and all stages (m) is then:

$$ {\text{T}}{{{\text{C}}}_{{{\text{WIP}}}}} = \sum\nolimits_{{i = 1}}^{n} {\sum\nolimits_{{j = 2}}^{m} {{{h}_{{i,j - 1}}}{{d}_{i}}\left[ {\left( {{{b}_{{ij}}} - {{b}_{{i,j - 1}}}} \right) + 0.5{{d}_{i}}{{k}_{i}}F\left( {1/{{p}_{{ij}}} - 1/{{p}_{{i,j - 1}}}} \right)} \right]} } . $$
(18)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasetyo, H. Comment on “Multiple cycle economic lot and delivery-scheduling problem in a two-echelon supply chain”. Int J Adv Manuf Technol 64, 1541–1543 (2013). https://doi.org/10.1007/s00170-012-4120-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4120-5

Keywords

Navigation