Skip to main content
Log in

A multi-stage decision-making process for multiple attributes analysis under an interval-valued fuzzy environment

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a multi-stage decision-making process for multiple attributes analysis under an interval-valued fuzzy environment. The proposed method does not demand weights of conflicting attributes through the decision-making process under uncertainty. The performance ratings of potential alternatives with respect to selected conflicting attributes are first described by linguistic terms and then are represented as interval-valued triangular fuzzy numbers. Second, an outranking matrix is proposed to denote the frequency with which one potential alternative dominates all the other alternatives according to each selected attribute. Consequently, the outranking matrix is triangularized in order to provide an implicit preordering or provisional order of potential alternatives under uncertainty. Finally, the tentative order of alternatives undergoes different operations of the screening and balancing that requires sequential application of a balancing principle to the advantages–disadvantages table. It hybridizes the conflicting attributes with the pair-wise comparisons of the potential alternatives for the multiple attributes analysis. Furthermore, an application example is used for the decision-making in a selection problem to illustrate the feasibility and applicability of proposed method in an interval-valued fuzzy environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartnick J (1991) Optimal triangulation of a matrix and a measure of interdependence for a linear econometric equation system. In: Gruber J (ed) Econometric decision models. Springer, Berlin, pp 487–495

    Google Scholar 

  2. Bellman BE, Zadeh LA (1970) Decision-making in a fuzzy environment. Manag Sci 17(4):141–164

    Article  MathSciNet  Google Scholar 

  3. Buckley JJ (1985) Fuzzy hierarchical analysis. Fuzzy Set Syst 17:233–247

    Article  MathSciNet  MATH  Google Scholar 

  4. Bustince H (1994) Conjuntos intuicionistas e intervalo valorados difusos: propiedades y construccion, relaciones intuicionistas fuzzy, thesis, Universidad Publica de Navarra

  5. Chen SH (2000) Representation, ranking, distance, and similarity of L-R type fuzzy number and application. Aust J Intell Process Syst 6(4):217–229

    Google Scholar 

  6. Chen C-T (2000) Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Set Syst 114:1–9

    Article  MATH  Google Scholar 

  7. Chen C-T, Lin C-T, Huang SF (2006) A fuzzy approach for supplier evaluation and selection in supply chain management. Int J Prod Econ 102:289–301

    Article  Google Scholar 

  8. Colerus E (1989) Vom einmaleins zum integral. Weltbild Verlag, London

    Google Scholar 

  9. Cornelis C, Deschrijver G, Kerre EE (2006) Advances and challenges in interval-valued fuzzy logic. Fuzzy Set Syst 157:622–627

    Article  MathSciNet  MATH  Google Scholar 

  10. Cooksey RW (1996) Judgment analysis: theory, methods and applications. Academic, Sydney

    Google Scholar 

  11. Delgado M, Verdegay JL, Vila MA (1992) Linguistic decision-making models. Int J Intell Syst 7(1):479–492

    Article  MATH  Google Scholar 

  12. Dembczyński K, Greco S, Słowiński R (2009) Rough set approach to multiple criteria classification with imprecise evaluations and assignments. Eur J Oper Res 198:626–636

    Article  MATH  Google Scholar 

  13. Dimova L, Sevastianov P, Sevastianov D (2006) MADM in a fuzzy setting: investment projects assessment application. Int J Prod Econ 100(1):10–29

    Article  Google Scholar 

  14. Foltz JC et al (1995) Multiattribute assessment of alternative cropping systems. Am J Agric Econ 77(2):408–420

    Article  Google Scholar 

  15. Grattan-Guinness I (1975) Fuzzy membership mapped onto interval and many-valued quantities. Z Math Logik Grundlag Math 22:149–160

    Article  MathSciNet  Google Scholar 

  16. Gorzalczany MB (1987) A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Set Syst 21:1–17

    Article  MathSciNet  MATH  Google Scholar 

  17. Grzegorzewski P (2004) Distances between intuitionistic fuzzy sets and/or interval valued fuzzy sets based on the Hausdorff metric. Fuzzy Set Syst 148:319–328

    Article  MathSciNet  MATH  Google Scholar 

  18. Halouani N, Chabchoub H, Martel J-M (2009) PROMETHEE-MD-2T method for project selection. Eur J Oper Res 195:841–849

    Article  MathSciNet  MATH  Google Scholar 

  19. Heidemann C, Eekhoff J, Strassert G (1981) Kritik der Nutzwertanalyse. Discussion paper no. 11. Institut fü r Regionalwissenschaft der Universität Karlsruhe

  20. Herrera F, Herrera-Viedma E, Verdegay JL (1996) A model of consensus in group decision making under linguistic assessments. Fuzzy Set Syst 78(1):73–87

    Article  MathSciNet  Google Scholar 

  21. Herrera F, Herrera-Viedma E (2000) Linguistic decision analysis: steps for solving decision problems under linguistic information. Fuzzy Set Syst 115(1):67–82

    Article  MathSciNet  MATH  Google Scholar 

  22. Hong DH, Lee S (2002) Some algebraic properties and a distance measure for interval valued fuzzy numbers. Inf Sci 148:1–10

    Article  MathSciNet  MATH  Google Scholar 

  23. Karnik NN, Mendel JM (2001) Operations on type-2 fuzzy sets. Fuzzy Set Syst 122:327–348

    Article  MathSciNet  MATH  Google Scholar 

  24. Keeney RL, Raiffa H (1976) Decisions with multiple objectives: preferences and value tradeoffs. Wiley, New York

    Google Scholar 

  25. Kohout LJ, Bandler W (1996) Fuzzy interval inference utilizing the checklist paradigm and BK-relational products. In: Kearfort RB et al (eds) Applications of interval computations. Kluwer, Dordrecht, pp 291–335

    Chapter  Google Scholar 

  26. Lansdowne ZF (1997) Outranking methods for multi-criterion decision making: Arrow’s and Raynaud’s conjecture. Soc Choice Welf 14(1):125–128

    Article  MathSciNet  MATH  Google Scholar 

  27. Li D-F (2005) Multiattribute decision making models and methods using intuitionistic fuzzy sets. J Comput Syst Sci 70(1):73–85

    Article  MATH  Google Scholar 

  28. Mustajoki J, Hamalainen RP, Salo A (2005) Decision support by interval SMART/SWING—incorporating imprecision in the SMART and SWING methods. Decis Sci 36(2):317–339

    Article  Google Scholar 

  29. Opricovic S, Tzeng GH (2007) Extended VIKOR method in comparison with outranking methods. Eur J Oper Res 178:514–529

    Article  MATH  Google Scholar 

  30. Prato T, Hajkowicz S (1999) Selection and sustainability of land and water resource management systems. J Am Res Assoc 35(4):739–752

    Article  Google Scholar 

  31. Saaty RW (1987) The analytic hierarchy process—what it is and how it is used. Math Model 9(3–5):161–176

    Article  MathSciNet  MATH  Google Scholar 

  32. Sambuc R (1975) Fonctions f-floues. Application à l áide au diagnostic en pathologie thyroidienne, Ph.D. Thesis, University of Marseille

  33. Strassert G (1995) Das Abwä gungsproblem bei multikriteriellen Entscheidungen. Grundlagen und Lö sungsansatz unter besonderer Berü cksichtigung der Regionalplanung. Peter Lang, Frankfurt am Main

    Google Scholar 

  34. Strassert G, Prato T (2002) Selecting farming systems using a new multiple criteria decision model: the balancing and ranking method. Ecol Econ 40(2):269–277

    Article  Google Scholar 

  35. Tecle A, Szidarovszky F, Duckstein L (1995) Conflict analysis in multi-resource forest management with multiple decision makers. Nat Resour 31(3):8–17

    Google Scholar 

  36. Triantaphyllou E (2000) Multi-criteria decision making methods: a comparative study. Kluwer, London

    Book  MATH  Google Scholar 

  37. Turksen IB (1996) Interval-valued strict preference with Zadeh triples. Fuzzy Set Syst 78:183–195

    Article  MathSciNet  Google Scholar 

  38. Turksen IB (1986) Interval-valued fuzzy sets based on normal forms. Fuzzy Set Syst 20:191–210

    Article  MathSciNet  MATH  Google Scholar 

  39. Vahdani B, Zandieh M (2010) Selecting suppliers using a new fuzzy multiple criteria decision model: the fuzzy balancing and ranking method. Int J Prod Res 48(18):5307–5326

    Article  MATH  Google Scholar 

  40. Wang G, Li X (1998) The applications of interval-valued fuzzy numbers and interval-distribution numbers. Fuzzy Set Syst 98:331–335

    Article  MATH  Google Scholar 

  41. Yakowitz DS, Lane LJ, Szidarovszky F (1993) Multi-attribute decision making: dominance with respect to an importance order of the attributes. Appl Math Comput 54(2–3):67–81

    Google Scholar 

  42. Yao JS, Yu MM (2004) Decision making based on statistical data, signed distance and compositional rule of inference. Int J Uncertain Fuzziness Knowl Based Syst 12(2):161–190

    Article  MathSciNet  MATH  Google Scholar 

  43. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  44. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 8:199–249

    Article  MathSciNet  MATH  Google Scholar 

  45. Zak J (1997) The methodology of multiple criteria decision making in the optimization of an urban transportation system: case study of Poznan city in Poland. Int Trans Oper Res 6(6):571–590

    MathSciNet  Google Scholar 

  46. Zavadskas EK, Turskis Z, Tamošaitiené J, Marina V (2008) Multicriteria selection of project managers by applying grey criteria. Technol Econ Dev Econ 14:462–477

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behnam Vahdani.

Appendix

Appendix

Consider two interval-valued fuzzy numbers \( {N_x} = \left[ {N_x^{ - };N_x^{ + }} \right] \) and \( {M_y} = \left[ {M_y^{ - };M_y^{ + }} \right] \), we have [16, 17, 22]:

Definition A.1

If ∈ (+, −, ×, ÷), then \( N \cdot M\left( {x \cdot y} \right) = \left[ {N_x^{ - } \cdot M_y^{ - };N_x^{ + } \cdot M_y^{ + }} \right] \), for a positive non-fuzzy number (v), \( v \cdot M\left( {x \cdot y} \right) = \left[ {v \cdot M_y^{ - };v \cdot M_y^{ + }} \right] \).

Definition A.2

Let \( \widetilde{N} \) and \( \tilde{M} \) be two interval-valued fuzzy numbers. \( \widetilde{N} \) and \( \tilde{M} \) can then be represented as follows:

$$ \widetilde{N} = \left[ {\left( {{N_1},N_1^{\prime }} \right);{N_2};\left( {N_3^{\prime },{N_3}} \right)} \right],\widetilde{M} = \left[ {\left( {{M_1},M_1^{\prime }} \right);{M_2};\left( {M_3^{\prime },{M_3}} \right)} \right]. $$

Let

$$ h\left( {\widetilde{N}} \right) = \frac{{{N_1} + N_1^{\prime } + 2{N_2} + N_3^{\prime } + {N_3}}}{6}, $$

and

$$ h\left( {\widetilde{M}} \right) = \frac{{{M_1} + M_1^{\prime } + 2{M_2} + M_3^{\prime } + {M_3}}}{6}, $$

We say \( \widetilde{N} > \widetilde{M} \) if \( h\left( {\widetilde{N}} \right) > h\left( {\widetilde{M}} \right) \).

Definition A.3

Normalizing interval-valued fuzzy numbers. Consider \( {\widetilde{x}_{{ij}}} = \left[ {\left( {{a_{{ij}}},a_{{ij}}^{\prime }} \right);{b_{{ij}}};\left( {c_{{ij}}^{\prime },{c_{{ij}}}} \right)} \right] \), the normalized performance rating can be calculated as:

$$ \begin{array}{*{20}l} {{\widetilde{n}_{{ij}} = {\left[ {{\left( {\frac{{a_{{ij}} }} {{c^{ + }_{i} }},\frac{{a^{\prime }_{{ij}} }} {{c^{ + }_{i} }}} \right)};\frac{{b_{{ij}} }} {{c^{ + }_{i} }};{\left( {\frac{{c^{\prime }_{{ij}} }} {{c^{ + }_{i} }},\frac{{c_{{ij}} }} {{c^{ + }_{i} }}} \right)}} \right]},} \hfill} & {{j = 1, \ldots ,m,\quad i \in \Omega _{b} } \hfill} \\ {{\widetilde{n}_{{ij}} = {\left[ {{\left( {\frac{{a^{ - }_{j} }} {{c^{\prime }_{i} }},\frac{{a^{ - }_{j} }} {{c_{i} }}} \right)};\frac{{a^{ - }_{j} }} {{b_{i} }};{\left( {\frac{{a^{ - }_{j} }} {{\prime _{i} }},\frac{{a^{ - }_{j} }} {{a_{i} }}} \right)}} \right]},} \hfill} & {{j = 1, \ldots ,m,\quad i \in \Omega _{c} } \hfill} \\ \end{array} $$

where

$$ \begin{array}{*{20}c} {{c^{ + }_{i} = \begin{array}{*{20}c} {{{\text{Max}}c_{{ij}} ,}} \\ {j} \\ \end{array} \,\,\,\,\,\,\,i \in \Omega _{b} }} \\ {{a^{ - }_{i} = \begin{array}{*{20}c} {{{\text{Min}}\,a_{{ij}} ,}} \\ {j} \\ \end{array} \,\,\,\,\,\,\,i \in \Omega _{c} }} \\ \end{array} $$

where b is associated with benefit attributes, and c is associated with cost attributes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mousavi, S.M., Vahdani, B., Tavakkoli-Moghaddam, R. et al. A multi-stage decision-making process for multiple attributes analysis under an interval-valued fuzzy environment. Int J Adv Manuf Technol 64, 1263–1273 (2013). https://doi.org/10.1007/s00170-012-4084-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4084-5

Keywords

Navigation