Skip to main content
Log in

Research on the mechanism of flash line defect in coining

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Flash line is one of the most important surface defects in coining process of silver commemorative coin. Due to the deficiency of study on the defect mechanism, it takes a long time to eliminate the defect through die tryouts which bring significant instabilities and development costs in coin manufacture. In the present investigation, the mechanism of flash line is studied by the elimination solutions and metal flow analysis using the finite element method (FEM). The radial components of friction in die–workpiece interface are considered as the main reasons of the defect. A modified friction model considering the influence of the sliding velocity in the die–workpiece interface is employed to describe the frictional behaviors in coining more properly. A novel radial friction work (RFW) model is proposed to predict the tendency of flash line and employed to a dynamic explicit FEM system for coining-COINFORM. The comparisons of the numerical and experimental results of a typical silver coin demonstrate that the RFW model is valid in the prediction of flash line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kobayashi S, Oh SI, Altan T (1989) Metal forming and the finite element method. Oxford University Press, New York

    Google Scholar 

  2. China Banknote Printing and Minting Corporation (2006) Training materials in banknote printing and minting industry: the Coinage of Metallic Coins (Confidential). Beijing

  3. Zhou D, Wagoner RH (1995) Development and application of sheet-forming simulation. J Mater Process Technol 50:1–16. doi:10.1016/0924-0136(94)01366-9

    Article  Google Scholar 

  4. Li G, Jinn JT, Wu WT, Oh SI (2001) Recent development and applications of three-dimensional finite element modeling in bulk forming processes. J Mater Process Technol 113:40–45. doi:10.1016/S0924-0136(01)00590-8

    Article  Google Scholar 

  5. Liu W, Guo Y, Tang S, Belytschko T (1998) A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis. Comput Methods Appl Mech Engrg 154:69–132. doi:10.1016/S0045-7825(97)00106-0

    Article  MathSciNet  MATH  Google Scholar 

  6. Xie C, Dong X, Li S, Huang S (2000) Rigid-viscoplastic dynamic explicit FEA of the ring rolling process. Int J Mach Tool Manu 40:81–93. doi:10.1016/S0890-6955(99)00043-7

    Article  Google Scholar 

  7. Chan LC, Fu MW, Li N, Lu J (2010) FEA-aided design of multi-stage drawing process and tooling for production of a miniature sheet metal component. Int J Adv Manuf Technol 46:993–1000. doi:10.1007/s00170-009-2163-z

    Article  Google Scholar 

  8. Hambli R, Soulat D, Chamekh A (2009) Finite element prediction of blanking tool cost caused by wear. Int J Adv Manuf Technol 44:648–656. doi:10.1007/s00170-008-1859-9

    Article  Google Scholar 

  9. Hallquist J (2006) LS-DYNA Theory Manual. http://www.dynasupport.com/manuals/additional/ls-dyna-theory-manual-2005-beta/view. Accessed 26 July 2008

  10. Leitao PJ, Teixeira AC, Rodrigues JMC, Martins PAF (1997) Development of an industrial process for minting a new type of bimetallic coin. J Mater Process Technol 70:178–184. doi:10.1016/S0924-0136(97)02914-2

    Article  Google Scholar 

  11. Fabbri R (2001) The design of a new coin. The Art of Minting 2:42–48

    Google Scholar 

  12. Fabbri R (2001) The design of a new coin. The Art of Minting 3:52–54

    Google Scholar 

  13. Ike H, Plancak M (1998) Coining process as a means of controlling surface microgeometry. J Mater Process Technol 80–81:101–107. doi:10.1016/S0924-0136(98)00101-0

    Article  Google Scholar 

  14. Buffa G, Fratini L, Micari F (2007) The relevance of the preform design in coining processes of cupronickel alloy. AIP Conf Proc 908:1005–1010. doi:10.1063/1.2740942

    Article  Google Scholar 

  15. Xu JP, Liu YQ, Li SQ, Wu SC (2008) Fast analysis system for embossing process simulation of commemorative coin–COINFORM. Comput Model Eng Sci 38(3):201–216. doi:10.3970/cmes.2008.038.201

    Google Scholar 

  16. Xu JP (2009) Study on minting process simulation algorithm for Au–Ag commemorative coin and optimization of forming process. Dissertation, Huazhong University of Science and Technology

  17. Guo K (2009) Development of design tools for coining process using FEM. Dissertation, Carleton University

  18. Malayappan S, Narayanasamy R (2004) An experimental analysis of upset forging of aluminium cylindrical billets considering the dissimilar frictional conditions at flat die surfaces. Int J Adv Manuf Technol 23(9–10):636–643. doi:10.1007/s00170-003-1584-3

    Article  Google Scholar 

  19. Menezes PL, Kumar K, Kishore KSV (2009) Influence of friction during forming processes—a study using a numerical simulation technique. Int J Adv Manufact Tech 40(11–12):1067–1076

    Article  Google Scholar 

  20. Ramezani M, Ripin ZM (2010) A friction model for dry contacts during metal-forming processes. Int J Adv Manuf Technol 51(1–4):93–102. doi:10.1007/s00170-010-2608-4

    Article  Google Scholar 

  21. Jeon J, Bramley AN (2007) A friction model for microforming. Int J Adv Manuf Technol 33(1–2):125–129. doi:10.1007/s00170-006-0608-1

    Article  Google Scholar 

  22. Tan X (2002) Comparisons of friction models in bulk metal forming. Tribol Int 35:385–393. doi:10.1016/S0301-679X(02)00020-8

    Article  Google Scholar 

  23. Hayhurst DR, Chan MW (2005) Determination of friction models for metallic die-workpiece interfaces. Int J Mech Sci 47:1–25. doi:10.1016/j.ijmecsci.2004.12.008

    Article  MATH  Google Scholar 

  24. Joun MS, Moon HG, Choi IS, Lee MC, Jun BY (2009) Effects of friction laws on metal forming processes. Tribol Int 42:311–319. doi:10.1016/j.triboint.2008.06.012

    Article  Google Scholar 

  25. Petersen SB, Martins PAF, Bay N (1997) Friction in bulk metal forming: a general friction model vs. the law of constant friction. J Mater Process Technol 66:186–194. doi:10.1016/S0924-0136(96)02518-6

    Article  Google Scholar 

  26. Petersen SB, Martins PAF, Bay N (1998) An alternative ring-test geometry for the evaluation of friction under low normal pressure. J Mater Process Technol 79:14–24. doi:10.1016/S0924-0136(97)00448-2

    Article  Google Scholar 

  27. Altan T, Vazquez V (1996) Numerical process simulation for tool and process design in bulk metal forming. CIRP Ann-Manuf Techn 45:599–615. doi:10.1016/S0007-8506(07)60514-9

    Article  Google Scholar 

  28. Chen CC, Kobayashi S (1978) Rigid plastic finite element analysis of ring compression. Applications of numerical methods to forming processes. ASMEAMD 28:163–174

    Google Scholar 

  29. Delamare F, Montmitonnet P (1984) Mechanical analysis of coin striking: application to the study of byzantine gold solidi minted in constantinople and carthage. J Mech Work Tech 10:253–271. doi:10.1016/0378-3804(84)90042-1

    Article  Google Scholar 

  30. Brekelmans WAM, Mulders LHG, Ramaekers JAH (1988) The coining process: analytical simulations evaluated. CIRP Ann-Manuf Techn 37:235–238. doi:10.1016/S0007-8506(07)61625-4

    Article  Google Scholar 

  31. Belytschko T, Wong BL, Plaskacz EJ (1989) Fission-fusion adaptivity in finite elements for nonlinear dynamics of shells. Comput Struct 33:1307–1323. doi:10.1016/0045-7949(89)90468-9

    Article  MATH  Google Scholar 

  32. Rachowicz W, Pardo D, Demkowicz L (2006) Fully automatic hp-adaptivity in three dimensions. Comput Methods Appl Mech Engrg 195:4816–4842. doi:10.1016/j.cma.2005.08.022

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, W., Liu, Y., Hu, Y. et al. Research on the mechanism of flash line defect in coining. Int J Adv Manuf Technol 63, 939–953 (2012). https://doi.org/10.1007/s00170-012-3952-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-3952-3

Keywords

Navigation