Skip to main content
Log in

Design for manufacturing applied to turbomachine components

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper proposes a new design method for complex workpieces applied to turbomachine components. The proposed method is integrated into a simultaneous engineering process considering design for manufacturing aspects; it is based on the definition of indicators which quantify the capability of a workpiece computer-aided design (CAD) model to check functional requirements. This paper especially develops the definition of manufacturability indicators for turbomachine components; hydraulic and mechanical indicators are not presented. The proposed design method is based on the definition of a parametrical CAD model. Then a large randomized number of parametrical combinations are tested and the generated CAD models are classified using indicators. The machinability indicator is obtained using the key issues of current machining problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Young HT, Chuang LC, Gerschwiler K, Kamps S (2004) A five-axis rough machining approach for a centrifugal impeller. Int J Adv Manuf Technol 23(3–4):233–239. doi:10.1007/s00170-003-1677-z

    Article  Google Scholar 

  2. Ezugwu EO, Bonney J, Yamane Y (2003) An overview of the machinability of aeroengine alloys. J Mater Process Technol 134(2):233–253. doi:10.1016/S0924-0136(02)01042-7

    Article  Google Scholar 

  3. Chuang LC, Young HT (2007) Integrated rough machining methodology for centrifugal impeller manufacturing. Int J Adv Manuf Technol 34(11–12):1062–1071. doi:10.1007/s00170-006-0675-3

    Article  Google Scholar 

  4. Qi R, Liu W, Bian H, Li L (2009) Five-axis rough machining for impellers. Front Mech Eng Chin 4(1):71–76. doi:10.1007/s11465-009-0010-4

    Article  Google Scholar 

  5. Bedi S, Ismail F, Mahjoob MJ, Chen Y (1997) Toroidal versus ball nose and flat bottom end mills. Int J Adv Manuf Technol 13(5):326–332. doi:10.1007/BF01178252

    Article  Google Scholar 

  6. Rehsteiner F (1993) Collision free five-axis milling of twisted ruled surfaces. Ann CIRP 42(1):457–461. doi:10.1016/S0007-8506(07)62485-8

    Article  Google Scholar 

  7. Chaves-Jacob J, Poulachon G, Duc E (2009) New approach to 5-axis flank milling of free-form surfaces: computation of adapted tool shape. Comput-Aided Des 41(12):918–929. doi:10.1016/j.cad.2009.06.009

    Article  Google Scholar 

  8. Liu XW (1995) Five-axis NC cylindrical milling of sculptured surfaces. Comput-Aided Des 27(12):887–894. doi:10.1016/0010-4485(95)00005-4

    Article  Google Scholar 

  9. Rubio W, Lagarrigue P, Dessein G, Pastor F (1998) Calculation of tool paths for a torus mill on free-form surfaces on five-axis machines with detection and elimination of interference. Int J Adv Manuf Technol 14(1):13–20. doi:10.1007/BF01179412

    Article  Google Scholar 

  10. Redonnet JM, Rubio W, Dessein G (1998) Side milling of ruled surfaces—optimum positioning of the milling cutter and calculation of interference. Int J Adv Manuf Technol 14(7):459–465. doi:10.1007/BF01351391

    Article  Google Scholar 

  11. Gong H, Cao LX, Liu J (2005) Improved positioning of cylindrical cutter for flank milling ruled surfaces. CAD Comput Aided Des 37(12):1205–1213. doi:10.1016/j.cad.2004.11.006

    Article  Google Scholar 

  12. Pechard PY, Tournier C, Lartigue C, Lugarini JP (2009) Geometrical deviations versus smoothness in 5-axis high-speed flank milling. Int J Mach Tools Manuf 49(6):454–461. doi:10.1016/j.ijmachtools.2009.01.005

    Article  Google Scholar 

  13. Menzel C, Bedi S, Mann S (2004) Triple tangent flank milling of ruled surfaces. Comput-Aided Des 36(3):289–296. doi:10.1016/S0010-4485(03)00118-0

    Article  Google Scholar 

  14. Senatore J, Landon Y, Rubio W (2008) Analytical estimation of error in flank milling of ruled surfaces. Comput-Aided Des 40(5):595–603. doi:10.1016/j.cad.2008.02.007

    Article  Google Scholar 

  15. Chu CH, Chen JT (2006) Tool path planning for five-axis flank milling with developable surface approximation. Int J Adv Manuf Technol 29:707–713. doi:10.1007/s00170-005-2564-6

    Article  Google Scholar 

  16. Peternell M, Pottmann H, Ravani B (1999) On the computational geometry of ruled surfaces. Comput-Aided Des 31(1):17–32. doi:10.1016/S0010-4485(98)00077-3

    Article  MATH  Google Scholar 

  17. Young HT, Chuang LC (2003) An integrated machining approach for a centrifugal impeller. Int J Adv Manuf Technol 21(8):556–563. doi:10.1007/s00170-002-1382-3

    Article  Google Scholar 

  18. Boothroyd G (1994) Product design for manufacture and assembly. Comput-Aided Des 26(7):505–520. doi:10.1016/0010-4485(94)90082-5

    Article  Google Scholar 

  19. Al-Zubaidy SN (1995) A proposed design package for centrifugal impellers. Comput Struct 55(2):347–356. doi:10.1016/0045-7949(93)E0050-X

    Article  Google Scholar 

  20. Duc E, Lartigue C, Tournier C, Bourdet P (1999) New concept for the design and the manufacturing of free-form surfaces: the machining surface. CIRP Ann Manuf Technol 48(1):103–106. doi:10.1016/S0007-8506(07)63141-2

    Article  Google Scholar 

  21. Dugas A, Lee JJ, Hascoët JY (2002) An enhanced machining simulator with tool deflection error analysis. J Manuf Syst 21(6):451–463. doi:10.1016/S0278-6125(02)80051-6

    Article  Google Scholar 

  22. Tönshoff HK, Gey C, Rackow N (2001) Flank milling optimization—the FLAMINGO project. Air Space Eur 3(3–4):60–63. doi:10.1016/S1290-0958(01)90058-9

    Article  Google Scholar 

  23. de Lacalle LN Lopez, Lamikiz A, Sanchez JA, Salgado MA (2007) Toolpath selection based on the minimum deflection cutting forces in the programming of complex surfaces milling. Int J Mach Tools Manuf 47(2):388–400. doi:10.1016/j.ijmachtools.2006.03.010

    Article  Google Scholar 

  24. Landon Y, Segonds S, Lascoumes P, Lagarrigue P (2004) Tool positioning error (TPE) characterisation in milling. Int J Mach Tools Manuf 44(5):457–464. doi:10.1016/j.ijmachtools.2003.12.001

    Article  Google Scholar 

  25. Larue A, Anselmetti B (2003) Deviation of a machined surface in flank milling. Int J Mach Tools Manuf 43(2):129–138. doi:10.1016/S0890-6955(02)00189-X

    Article  Google Scholar 

  26. Ferry W, Altintas Y (2008) Virtual five-axis flank milling of jet engine impellers—Part I: mechanics of five-axis flank milling. ASME International Mechanical Engineering Congress and Exposition. Proceedings 3: 339–353. ISBN: 978-0-7918-4297-3

  27. Ferry W, Altintas Y (2008) Virtual five-axis flank milling of jet engine impellers—part II: feed rate optimization of five-axis flank milling. ASME International Mechanical Engineering Congress and Exposition. Proceedings 3: 355–369. ISBN: 978-0-7918-4297-3

  28. Suh S, Cho J, Hascoet JY (1996) Incorporation of tool deflection in tool path computation: simulation and analysis. J Manuf Syst 15(3):190–199. doi:10.1016/0278-6125(96)89571-9

    Article  Google Scholar 

  29. Dépincé P, Hascoët JY (2005) Active integration of tool deflection effects in end milling. Part 1. Prediction of milled surfaces. Int J Mach Tools Manuf 46(9):937–944. doi:10.1016/j.ijmachtools.2005.08.005

    Article  Google Scholar 

  30. Dépincé P, Hascoët JY (2005) Active integration of tool deflection effects in end milling. Part 2. Compensation of tool deflection. Int J Mach Tools Manuf 46(9):945–956. doi:10.1016/j.ijmachtools.2005.08.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Chaves-Jacob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaves-Jacob, J., Poulachon, G., Duc, E. et al. Design for manufacturing applied to turbomachine components. Int J Adv Manuf Technol 57, 453–463 (2011). https://doi.org/10.1007/s00170-011-3306-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-011-3306-6

Keywords

Navigation