Skip to main content
Log in

Simulation of low rigidity part machining applied to thin-walled structures

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The aim of this study is to evaluate the modelling of machining vibrations of thin-walled aluminium workpieces at high productivity rate. The use of numerical simulation is generally aimed at giving optimal cutting conditions for the precision and the surface finish needed. The proposed modelling includes all the ingredients needed for real productive machining of thin-walled parts. It has been tested with a specially designed machining test with high cutting engagement and taking into account all the phenomena involved in the dynamics of cutting. The system has been modelled using several simulation techniques. On the one hand, the milling process was modelled using a dynamic mechanistic model, with time domain simulation. On the other hand, the dynamic parameters of the system were obtained step by step by finite element analysis; thus the variation due to metal removal and the cutting edge position has been accurately taken into account. The results of the simulations were compared to those of the experiments; the discussion is based on the analysis of the cutting forces, the amplitude and the frequency of the vibrations evaluating the presence of chatter. The specific difficulties to perfect simulation of thin-walled workpiece chatter have been finely analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tobias SA, Fishwick W (1958) Theory of regenerative machine tool chatter. Engineer 205:199–203, 238–239

    Google Scholar 

  2. Tlusty J, Polácek M (1963) The stability of the machine tool against self-exited vibration in machining, Proceedings of the International Research in Production Engineering Conference. ASME, Pittsburgh, pp 465–474

    Google Scholar 

  3. Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. Ann CIRP 44:357–362

    Article  Google Scholar 

  4. Altintas Y (2000) Manufacturing automation. Cambridge University, Cambridge

    Google Scholar 

  5. Bayly PV, Halley JE, Mann BP, Davies MA (2003) Stability of interrupted cutting by temporal finite element analysis. Trans ASME J Manuf Sci Eng 125:220–225

    Article  Google Scholar 

  6. Insperger T, Stépán G (2004) Uptaded semi-discretization method for periodic delay-differential equations with discrete delay. Int J Numer Meth Eng 61:117–141

    Article  MATH  Google Scholar 

  7. Insperger T, Stépán G, Turi J (2008) On the higher-order semi-discretizations for periodic delayed systems. J Sound Vib 313:334–341

    Article  Google Scholar 

  8. Davies MA, Pratt JR, Dutterer B, Burns TJ (2002) Stability prediction for low radial immersion milling. Trans ASME J Manuf Sci Eng 124:217–225

    Article  Google Scholar 

  9. Insperger Y, Mann BP, Stépán G, Bayly PV (2003) Stability of up-milling and down-milling, Part 1: alternative analytical methods. Int J Mach Tools Manuf 43:25–34

    Article  Google Scholar 

  10. Campomanes ML, Altintas Y (2003) An improved time domain simulation for dynamic milling at small radial immersions. Trans ASME J Manuf Sci Eng 125:416–422

    Article  Google Scholar 

  11. Lapujoulade F, Mabrouki T, Raïssi K (2002) Prédiction du comportement vibratoire du fraisage latéral de finition des pièces à parois minces. Mec Ind 3:403–418

    Google Scholar 

  12. Thevenot V, Arnaud L, Dessein G, Cazenave-Larroche G (2006) Influence of material removal on dynamic behavior of thin walled structure in peripheral milling. Mach Sci Technol 10:275–287

    Article  Google Scholar 

  13. Thevenot V, Arnaud L, Dessein G, Cazenave-Larroche G (2006) Integration of dynamic behaviour in stability lobes method: 3D lobes construction and application to thin walled structure milling. Int J Adv Manuf Technol 27:638–644

    Article  Google Scholar 

  14. Seguy S, Campa FJ, López de Lacalle LN, Arnaud L, Dessein G, Aramendi G (2008) Toolpath dependent stability lobes for the milling of thin-walled parts. Int J Mach Machinabil Mater 4:377–392

    Article  Google Scholar 

  15. Bravo U, Altuzarra O, López de Lacalle LN, Sánchez JA, Campa FJ (2005) Stability limits of milling considering the flexibily of the workpiece and the machine. Int J Mach Tools Manuf 45:1669–1680

    Article  Google Scholar 

  16. Herranz S, Campa FJ, López de Lacalle LN, Rivero A, Lamikiz A, Ukar E, Sánchez JA, Bravo U (2005) The milling of airframe components with low rigidity: a general approach to avoid static and dynamic problems. P I Mech Eng B J Eng Manuf 219:789–801

    Article  Google Scholar 

  17. Kline WA, Devor RE, Lindberg JR (1982) The prediction of cutting forces in end milling with application to cornering cuts. Int J Mach Tool Des Res 22:7–22

    Article  Google Scholar 

  18. Engin S, Altintas Y (2001) Mechanics and dynamics of general milling cutters, part I: helical end mills. Int J Mach Tools Manuf 41:2195–2212

    Article  Google Scholar 

  19. Tlusty J, Ismail F (1981) Basic non-linearity in machining chatter. Ann CIRP 30:299–304

    Article  Google Scholar 

  20. Tlusty J (1986) Dynamics of high speed milling. Trans ASME J Eng Ind 108:59–67

    Article  Google Scholar 

  21. Smith S, Tlusty J (1993) Efficient simulation programs for chatter in milling. Ann CIRP 42:463–466

    Article  Google Scholar 

  22. Montgomery D, Altintas Y (1991) Mechanism of cutting force and surface generation in dynamic milling. Trans ASME J Eng Ind 113:160–168

    Article  Google Scholar 

  23. Peigné G, Paris H, Brissaud D (2003) A model of milled surface generation for time domain simulation of high-speed cutting. P I Mech Eng B J Eng Manuf 217:919–930

    Article  Google Scholar 

  24. Surmann T, Enk D (2007) Simulation of milling tool vibration trajectories along changing engagement conditions. Int J Mach Tools Manuf 47:1442–1448

    Article  Google Scholar 

  25. Altintas Y, Montgomery D, Budak E (1992) Dynamic peripheral milling of flexible structures. Trans ASME J Eng Ind 114:137–145

    Article  Google Scholar 

  26. Li H, Shin YC (2006) A comprehensive dynamic end milling simulation model. Trans ASME J Manuf Sci Eng 128:86–95

    Article  MathSciNet  Google Scholar 

  27. Lorong P, Coffignal G, Cohen-Assouline S (2008) Simulation du comportement dynamique d’un système usinant: modélisation de l’interaction outil/matière en présence d’une pièce flexible. Mec Ind 9:117–124

    Google Scholar 

  28. Seguy S, Dessein G, Arnaud L (2008) Surface roughness variation of thin wall milling, related to modal interactions. Int J Mach Tools Manuf 48:261–274

    Article  Google Scholar 

  29. Gonzalo O, Peigné G, Gonzalez D (2006) High speed machining simulation of thin-walled components, 5th International Conference on High Speed Machining. Metz, France

    Google Scholar 

  30. Paris H, Brissaud D, Gouskov A (2007) A more realistic cutting force model at uncut chip thickness close to zero. Ann CIRP 56:415–418

    Article  Google Scholar 

  31. Turner S, Merdol D, Altintas Y, Ridgway K (2007) Modelling of the stability of variable helix end mills. Int J Mach Tools Manuf 47:1410–1416

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Seguy.

Additional information

Sadly, Grégoire Peigné died during the preparation of the article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnaud, L., Gonzalo, O., Seguy, S. et al. Simulation of low rigidity part machining applied to thin-walled structures. Int J Adv Manuf Technol 54, 479–488 (2011). https://doi.org/10.1007/s00170-010-2976-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-010-2976-9

Keywords

Navigation