Skip to main content
Log in

Investigations into the effect of tool shapes with size factor consideration in sink electrical discharge machining (EDM) process

  • ORIGINAL ARTICLE
  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In sink electric discharge machining (EDM) process, the tool shape and size along with wear are of great importance because they adversely affect the accuracy of machined features. This paper presents the application of response surface methodology (RSM) for investigating the effect of tool shapes such as triangular, square, rectangular, and circular with size factor consideration along with other process parameters like discharge current, pulse on-time, pulse off-time, and tool area. The RSM-based mathematical models of material removal rate (MRR) and tool wear rate (TWR) have been developed using the data obtained through central composite design. The analysis of variance was applied to verify the lack of fit and adequacy of the developed models. Further, the confirmation tests were performed to ascertain the accuracy of the developed models. The investigations revealed that the best tool shape for higher MRR and lower TWR is circular, followed by triangular, rectangular, and square cross sections. From the parametric analysis, it is also observed that the interaction effect of discharge current and pulse on-time is highly significant on MRR and TWR, whereas the main factors such as pulse off-time and tool area are statistically significant on MRR and TWR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalpajian S, Schmid SR (2003) Material removal processes: abrasive, chemical, electrical and high-energy beam. Manufacturing processes for engineering materials. Prentice Hall, New Jersey, p 541

    Google Scholar 

  2. Konig W, Dauw DF, Levy G, Panten U (1988) EDM-future steps towards the machining of ceramics. Ann CIRP 37(2):623–631. doi:10.1016/S0007-8506(07)60759-8

    Article  Google Scholar 

  3. Tsai HC, Yan BH, Huang FY (2003) EDM performance of Cr/Cu based composite electrodes. Int J Mach Tools Manuf 43(3):245–252. doi:10.1016/S0890-6955(02)00238-9

    Article  Google Scholar 

  4. Boothroyd G, Winston AK (1989) Non-conventional machining processes. Fundamentals of machining and machine tools. Marcel Dekker, New York, p 491

    Google Scholar 

  5. McGeough JA (1988) Electro-discharge machining. Advanced methods of machining. Chapman and Hall, London, p 130

    Google Scholar 

  6. Krar SF, Check AF (1997) Electrical discharge machining. Technology of machine tools. McGraw-Hill, New York, p 800

    Google Scholar 

  7. Mohri N, Suzuki M, Furuya M, Saito N (1995) Electrode wear process in electrical discharge machining. Ann CIRP 44(1):165–168. doi:10.1016/S0007-8506(07)62298-7

    Article  Google Scholar 

  8. Haas R (1992) An innovative state of EDM Die-sinking into future. Proc ISEM X, pp 106–111

  9. Ozgedik A, Cogun C (2006) An experimental investigation of tool wear in EDM. Int J Adv Manuf Technol 27:488–500. doi:10.1007/s00170-004-2220-6

    Article  Google Scholar 

  10. Rajurkar KP, Yu ZY (2000) 3D micro-EDM using CAD/CAM. Ann CIRP 49(1):127–130. doi:10.1016/S0007-8506(07)62911-4

    Article  Google Scholar 

  11. Kruth JP, Lauwers B, Clappaert W (1992) A study of EDM pocketing, vol 10. ISEM, Magdeburg, pp 121–135

    Google Scholar 

  12. Bayramoglu M, Duffill AW (1994) Systematic investigation on the use of cylindrical tools for the production of 3D complex shapes on CNC EDM machines. Int J Mach Tools Manuf 34(3):327–339. doi:10.1016/0890-6955(94)90003-5

    Article  Google Scholar 

  13. Yu Z, Masuzawa T, Fujino M (1998) 3D micro-EDM the simple shape electrode. Int J Electr Mach 3:7–12

    Google Scholar 

  14. Rajurkar KP, Narasimhan J, Yu Z (2004) Tool wear compensation and path generation in micro and macro EDM. Trans NAMRI/SME 32:151–158

    Google Scholar 

  15. Wang CC, Yan BH (2000) Blind hole drilling of Al2O3/6061Al composite using rotary EDM. J Mater Process Technol 102:90–102. doi:10.1016/S0924-0136(99)00423-9

    Article  Google Scholar 

  16. Lin JL, Wang KS, Yan BH, Tarng YS (2000) Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics. J Mater Process Technol 102:48–55. doi:10.1016/S0924-0136(00)00438-6

    Article  Google Scholar 

  17. Lin JL, Lin CL (2002) The use of the orthogonal array with grey relational analysis to optimize the EDM process with multiple performance characteristics. Int J Mach Tools Manuf 42:237–244. doi:10.1016/S0890-6955(01)00107-9

    Article  Google Scholar 

  18. Tsai KM, Wang PJ (2001) Predictions on surface finish in electrical discharge machining based upon neural network models. Int J Mach Tools Manuf 41(10):1385–1403. doi:10.1016/S0890-6955(01)00028-1

    Article  Google Scholar 

  19. Tsai KM, Wang PJ (2001) Semi-empirical model of surface finish on electrical discharge machining. Int J Mach Tools Manuf 41(10):1455–1477. doi:10.1016/S0890-6955(01)00015-3

    Article  Google Scholar 

  20. Lin CL, Lin JL, Ko TC (2002) Optimization of the EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method. Int J Adv Manuf Technol 19(4):271–277. doi:10.1007/s001700200034

    Article  Google Scholar 

  21. Marafona J, Wykes C (2000) A new method of optimizing material removal rate using EDM with copper–tungsten electrodes. Int J Mach Tools Manuf 40(2):153–164. doi:10.1016/S0890-6955(99)00062-0

    Article  Google Scholar 

  22. Lin JL, Wang KS, Yan BH, Tarng YS (2000) Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics. J Mater Process Technol 102:48–55. doi:10.1016/S0924-0136(00)00438-6

    Article  Google Scholar 

  23. Tzeng YF, Chen FC (2003) A simple approach for robust design of high-speed electrical discharge machining technology. Int J Mach Tools Manuf 43(3):217–227. doi:10.1016/S0890-6955(02)00261-4

    Article  Google Scholar 

  24. Kleijnen JPC (1987) Statistical tools for simulation practitioners. Marcel Dekker, New York

    MATH  Google Scholar 

  25. Kleijnen JPC, Sargent RG (2000) A methodology for fitting and validating metamodels in simulation. Eur J Oper Res 120:14–29. doi:10.1016/S0377-2217(98)00392-0

    Article  MATH  Google Scholar 

  26. Myers Raymond H, Montgomery DC (2002) Response surface methodology: process and product optimization using designed experiment. Wiley InterScience, New York

    Google Scholar 

  27. Bhattacharya B, Sorkhel SK (1999) Investigation for controlled electrochemical machining through response surface methodology based approach. J Mater Process Technol 86:200–207. doi:10.1016/S0924-0136(98)00311-2

    Article  Google Scholar 

  28. Gunaraj V, Murugan N (1999) Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. J Mater Process Technol 88:266–275. doi:10.1016/S0924-0136(98)00405-1

    Article  Google Scholar 

  29. Karthikeyan R, Lakshmi Narayan PR, Naagarazan RS (1999) Mathematical modeling for electric discharge machining of aluminum-silicon carbide particulate composites. J Mater Process Technol 87:59–63. doi:10.1016/S0924-0136(98)00332-X

    Article  Google Scholar 

  30. Cochran WG, Cox GM (1992) Experimental designs. Wiley, New York

    MATH  Google Scholar 

  31. Montgomery DC (2004) Design and analysis of experiments, 5th edn. Wiley, New York

    Google Scholar 

  32. Inc M (2006) Minitab user manual version 13. Minitab, State College, PA

    Google Scholar 

  33. Hewidy MS, El–Taweel TA, El-Safty MF (2005) Modeling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM. J Mater Process Technol 169:328–336. doi:10.1016/j.jmatprotec.2005.04.078

    Article  Google Scholar 

  34. Zhang JH, Lee TC, Lau WS (1997) Study on the electro-discharge machining of a hot pressed aluminum oxide based ceramic. J Mater Process Technol 63:908–912. doi:10.1016/S0924-0136(96)00012-X

    Article  Google Scholar 

  35. Cogun C, Akaslan S (2002) The effect of machining parameters on tool electrode wear and machining performance in electric discharge machining. KSME Int J 16(1):46–59

    Google Scholar 

  36. Lee SH, Li XP (2001) Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of tungsten carbide. J Mater Process Technol 115:344–358. doi:10.1016/S0924-0136(01)00992-X

    Article  Google Scholar 

  37. Chen Y, Mahdavian SM (1999) Parametric study into erosion wear in a computer numerical controlled electro-discharge machining process. Wear 236:350–354. doi:10.1016/S0043-1648(99)00304-X

    Article  Google Scholar 

  38. Chen SL, Yan BH, Huang FY (1999) Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics ofTi-6Al-4 V. J Mater Process Technol 87:107–111. doi:10.1016/S0924-0136(98)00340-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Sohani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohani, M.S., Gaitonde, V.N., Siddeswarappa, B. et al. Investigations into the effect of tool shapes with size factor consideration in sink electrical discharge machining (EDM) process. Int J Adv Manuf Technol 45, 1131 (2009). https://doi.org/10.1007/s00170-009-2044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00170-009-2044-5

Keywords

Navigation