Skip to main content
Log in

Adaptive identification of hysteresis and creep in piezoelectric stack actuators

  • SPECIAL ISSUE - ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The adaptive identification of the non-linear hysteresis and creep effects in a piezoelectric actuator is proposed in this paper. Model uncertainties related to the hysteresis and creep effects, most prominently in the high frequency zone (to 100 Hz), large operating amplitude and/long operating time, can make a piezoelectric actuator-driven micro-positioning system unstable in the closed loop. Furthermore, these uncertainties may lead to inaccurate open-loop control and frequently cause harmonic distortion when a piezoelectric actuator is driven with a sinusoidal input voltage signal. In order to solve the above issues, it is important to determine an accurate non-linear dynamic model of a piezoelectric actuator. An unscented Kalman filter-based adaptive identification algorithm is presented, which accurately determines the non-linear dynamics of a piezoelectric stack type actuator such that the non-linear hysteresis and creep effects can be accurately predicted. Since hysteresis and creep are dominant in open loop, the actuator is driven in an open-loop mode in this investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newcomb CV, Flinn I (1982) Improving the linearity of piezoelectric ceramic actuators. IEEE Electron Lett 18(11):442–442. doi:10.1049/el:19820301

    Article  Google Scholar 

  2. Huang S, Tan K, Lee T (2002) Adaptive motion control using neural network approximations. Automatica 38(2):227–233. doi:10.1016/S0005-1098(01)00192-3

    Article  MATH  MathSciNet  Google Scholar 

  3. Jan C, Hwang C (2000) Robust control design for a piezoelectric actuator system with dominant hysteresis. IEEE Int Conf Ind Electron Instrum 3:1515–1520

    Google Scholar 

  4. Goldfarb M, Celanovic N (1997) A lumped parameter electromechanical model for describing the nonlinear behaviour of piezoelectric actuators. J Dyn Syst Meas Control 119:478–485. doi:10.1115/1.2801282

    Article  MATH  Google Scholar 

  5. Mayhan P, Srinivasan K, Watechagit S, Washington G (2000) Dynamic modelling and controller design for a piezoelectric actuation system used for machine tool control. J Intell Mater Syst Struct 11(10):771–780

    Google Scholar 

  6. Handley D, Lu T-F, Yong YK, Eales C (2004) Workspace investigation of a 3DOF compliant micro-motion stage. The 8th International Conference on Control, Automation, Robotics and Vision, ICARCV

  7. Stroscio J, Kaiser W (1993) Scanning tunneling microscopy. Academic, San Diego

    Google Scholar 

  8. Palazzolo A, Jagannathan S, Kascak A, Montague G, Kiraly L (1993) Hybrid active vibration control of rotor bearing systems using piezoelectric actuators. J Vib Acoust 115:111–119. doi:10.1115/1.2930303

    Article  Google Scholar 

  9. Okazaki Y (1990) A micro positioning tool post using a piezoelectric actuator for diamond turning machines. Precis Eng 12(3):151–156. doi:10.1016/0141-6359(90)90087-F

    Article  Google Scholar 

  10. Yong YK, Lu T-F, Minase JL (2006) Trajectory following with a three-DOF micro-motion stage. Australasian Conference on Robotics and Automation, ACRA, December 6–8, Auckland, New Zealand

  11. Huang L, Tiersten H (1998) An analytical description of slow hysteresis in polarized ferroelectric ceramic actuators. J Intell Mater Syst Struct 9:417–426

    Article  Google Scholar 

  12. Arafa M, Baz A (2004) On the nonlinear behaviour of piezoelectric actuator. J Vib Control 10(3):387–398. doi:10.1177/1077546304033365

    Article  MATH  Google Scholar 

  13. Ge P, Jouaneh M (1995) Modelling hysteresis in piezoceramic actuators. Precis Eng 17(3):211–221. doi:10.1016/0141-6359(95)00002-U

    Article  Google Scholar 

  14. Minase J, Lu T, Wornle F (2007) State estimation of non-linear piezoelectric stack actuator hysteresis model. Proc SPIE Int Soc Opt Eng 6414:1–10

    Google Scholar 

  15. Adriaens H, De Koning W, Banning R (2000) Modelling piezoelectric actuators. IEEE/ASME Trans Mechatron 5(4):331–341. doi:10.1109/3516.891044

    Article  Google Scholar 

  16. Tokin (2000) Multilayer piezoelectric actuators (product guide), 1 (1)

  17. Ru C, Sun L (2005) Hysteresis and creep compensation for piezoelectric actuator in open-loop operation. Sens Actuators A 122(1):124–130. doi:10.1016/j.sna.2005.03.056

    Article  Google Scholar 

  18. Fett T, Thun G (1998) Determination of room-temperature tensile creep of PZT. J Mater Sci Lett 17:1929–1931. doi:10.1023/A:1006608509876

    Article  Google Scholar 

  19. Barrett R, Quate C (1991) Optical scan-correction system applied to atomic force microscopy. Rev Sci Instrum 62(6):1393–1399. doi:10.1063/1.1142506

    Article  Google Scholar 

  20. Mayergoyz I (1986) Mathematical models of hysteresis. Phys Rev Lett 56:1518–1521. doi:10.1103/PhysRevLett.56.1518

    Article  Google Scholar 

  21. Krasnosekl'skii M, Pokrovskii A (1983) Systems with hysteresis. Nauka, Moscow

    Google Scholar 

  22. Tong Z, Sui S, Du C (2006) A novel neural network model of hysteresis nonlinearities. Proceedings of the 6th International Conference on Intelligent Systems Design and Applications, 84–89

  23. Kalman R (1965) A new approach to linear filtering and prediction problems. J Basic Eng Ser D 82:35–45

    Google Scholar 

  24. Julier S, Uhlmann J (1997) A new extension of the Kalman filters to nonlinear systems. In Proceedings of Aerosense: The 11th International Symposium on Aerospace/Defence Sensing, Simulation and Controls, pp 182–193

  25. Wan E, Merve R (2001) Chapter 7: Unscented Kalman filter. Kalman filtering and neural networks. Wiley, New York

    Google Scholar 

  26. Julier S, Uhlmann J (1996) A general method for approximating non-linear transformations of probability distributions. Technical Report, Robotics Research Group, Department of Engineering Science, University of Oxford

  27. Tse S, Gao Y (2007) Modelling of piezoelectric actuator based nano positioning system using multi polynomial regression with CI continuity. Key Eng Mater 339:434–441. doi:10.4028/www.scientific.net/KEM.339.434

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Minase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minase, J., Lu, TF., Cazzolato, B. et al. Adaptive identification of hysteresis and creep in piezoelectric stack actuators. Int J Adv Manuf Technol 46, 913–921 (2010). https://doi.org/10.1007/s00170-009-2033-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-009-2033-8

Keywords

Navigation