Skip to main content
Log in

Investigation of machining parameters for the multiple-response optimization of micro electrodischarge milling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper investigated the influence of three micro electrodischarge milling process parameters, which were feed rate, capacitance, and voltage. The response variables were average surface roughness (R a ), maximum peak-to-valley roughness height (R y ), tool wear ratio (TWR), and material removal rate (MRR). Statistical models of these output responses were developed using three-level full factorial design of experiment. The developed models were used for multiple-response optimization by desirability function approach to obtain minimum R a , R y , TWR, and maximum MRR. Maximum desirability was found to be 88%. The optimized values of R a , R y , TWR, and MRR were 0.04, 0.34 μm, 0.044, and 0.08 mg min−1, respectively for 4.79 μm s−1 feed rate, 0.1 nF capacitance, and 80 V voltage. Optimized machining parameters were used in verification experiments, where the responses were found very close to the predicted values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Madou MJ (2002) Fundamentals of micro fabrication. The science of miniaturization, 2nd edn. CRC Press LLC, Boca Raton

    Google Scholar 

  2. Hsu TR (2002) MEMS & Microsystems- Design and Manufacture. McGraw Hill.

    Google Scholar 

  3. Ehmann KF, DeVor RE, Kapoor SG (2002) Micro/meso-scale mechanical manufacturing- opportunities and challenges. Proc JSME/ASME Int Conf Mater Process 1:6–13

    Google Scholar 

  4. Lim HS, Wong YS, Rahman M, Lee MKE (2003) A study on the machining of high-aspect ratio micro-structures using micro-EDM. J Mater Process Technol 140:318–325 doi:10.1016/S0924-0136(03)00760-X

    Article  Google Scholar 

  5. Fleischer J, Kotschenreuther J (2007) The manufacturing of micro molds by conventional and energy-assisted processes. Int J Adv Manuf Technol 33:75–85 doi:10.1007/s00170-006-0596-1

    Article  Google Scholar 

  6. Puertas I, Luis CJ (2004) A study of optimization of machining parameters for electrical discharge machining of boron carbide. Mater Manuf Process 19(6):1041–1070

    Article  Google Scholar 

  7. Lin YC, Cheng CH, Su BL, Hwang LR (2006) Machining characteristics and optimization of machining parameters of SKH 57 high-speed steel using electrical-discharge machining based on Taguchi method. Mater Manuf Process 21(8):922–929

    Article  Google Scholar 

  8. Uhlmann E, Piltz S, Jerzembeck S (2005) Micro-machining of cylindrical parts by electrical discharge grinding. J Mater Process Technol 160:15–23 doi:10.1016/j.jmatprotec.2004.02.054

    Article  Google Scholar 

  9. Han F, Jiang J, Yu D (2007) Influence of machining parameters on surface roughness in finish cut of WEDM. Int J Adv Manuf Technol 34(5–6):538–546

    Article  Google Scholar 

  10. Chiang K (2007) Modeling and analysis of the effects of machining parameters on the performance characteristics in the EDM process of Al2O3+TiC mixed ceramic. Int J Adv Manuf Technol 37(5–6):528–533

    Google Scholar 

  11. Liao YS, Huang JT, Chen YH (2004) A study to achieve a fine surface finish in wire-EDM. J Mater Process Technol 149:165–171 doi:10.1016/j.jmatprotec.2003.10.034

    Article  Google Scholar 

  12. Salonitis K, Stournaras A, Stavropoulos P, Chryssolouris G (2007) Thermal modeling of the material removal rate and surface roughness for die-sinking EDM. Int J Adv Manuf Technol ISSN 0268-3768 (Print) 1433-3015 (Online)doi:10.1007/s00170-007-1327-y

  13. Her M-G, Weng F-T (2001) Micro-hole machining of copper using the electro-discharge machining process with a tungsten carbide electrode compared with a copper electrode. Int J Adv Manuf Technol 17:715–719 doi:10.1007/s001700170116

    Article  Google Scholar 

  14. Kim YT, Park SJ, Lee SJ (2005) Micro/meso-scale shapes machining by micro EDM process. Int J Prec Engin Manuf 6(2):5–7

    Google Scholar 

  15. Ozgedik A, Cogun C (2006) An experimental investigation of tool wear in electric discharge machining. Int J Adv Manuf Technol 27:488–500 doi:10.1007/s00170-004-2220-6

    Article  Google Scholar 

  16. Son SM, Lim HS, Kumar AS, Rahman M (2007) Influences of pulsed power condition on the machining properties in micro EDM. J Mater Process Technol 190:73–76 doi:10.1016/j.jmatprotec.2007.03.108

    Article  Google Scholar 

  17. Lee SH, Li XP (2001) Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of tungsten carbide. J Mater Process Technol 115:344–358 doi:10.1016/S0924-0136(01)00992-X

    Article  Google Scholar 

  18. Chen SL, Yan BH, Huang FY (1999) Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti-6Al-4V. J Mater Process Technol 87:107–111 doi:10.1016/S0924-0136(98)00340-9

    Article  Google Scholar 

  19. Chung KD, Kim BH, Chu CN (2007) Micro electrical discharge milling using deionized water as a dielectric fluid. J Micromech Microeng 17:867–874 doi:10.1088/0960-1317/17/5/004

    Article  Google Scholar 

  20. Ghoreishi M, Atkinson J (2002) A comparative experimental study of machining characteristics in vibratory, rotary and vibro-rotary electrodischarge machining. J Mater Process Technol 120:374–384 doi:10.1016/S0924-0136(01)01160-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyad Mehfuz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehfuz, R., Ali, M.Y. Investigation of machining parameters for the multiple-response optimization of micro electrodischarge milling. Int J Adv Manuf Technol 43, 264–275 (2009). https://doi.org/10.1007/s00170-008-1705-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1705-0

Keywords

Navigation