Skip to main content
Log in

Theoretical and experimental study of microstructures and weld pool geometry during GTAW of 304 stainless steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this work, temperature field and weld pool geometry during gas tungsten arc welding of 304 stainless steel are predicted by solving the governing equations of heat transfer and fluid flow under quasi-steady state conditions. The model is based on numerical solution of the equations of conservation of mass, momentum, and energy in the weld pool. Weld pool geometry, weld thermal cycles, and various solidification parameters are then calculated by means of the model predictions. The model considers the effects of various process parameters including welding speed and heat input. It is found that the weld pool geometry, predicted by the proposed model, is in reasonable agreement with the corresponding experimentally measured ones. In addition, the solidification behavior of the weld pool can be predicted properly by the model predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramirez MA, Trapaga G, McKelliget H (2004) A comparison between different numerical formulations for welding arc representations. J Mater Proc Tech 155–156:1634 doi:10.1016/j.jmatprotec.2004.04.313

    Article  Google Scholar 

  2. Kou S (1981) Simulation of heat flow during the welding of thin plates. Metall Trans A 12:2025 doi:10.1007/BF02644171

    Article  Google Scholar 

  3. Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans 15b:299

    Google Scholar 

  4. Chan C, Mazumder J, Chen MM (1984) A two-dimensional transient model for convection in laser melted pool. Metab Trans A 15:2175–2184 doi:10.1007/BF02647100

    Article  Google Scholar 

  5. Zacharia T, David SA, Vitek JM, DebRoy T (1990) Modeling of interfacial phenomena in welding. Met Trans B 21:600 doi:10.1007/BF02667874

    Article  Google Scholar 

  6. Mundra K, DebRoy T, Kelkar KM (1996) Numerical prediction of fluid flow and heat transfer in welding with a moving heat source. Numer Heat Transfer Part A 29:115

    Article  Google Scholar 

  7. Komanduri R, Hou ZB (2000) Thermal analysis of the arc welding process: Part I. General solutions. Metall Mater Trans B 31:1353 doi:10.1007/s11663-000-0022-2

    Article  Google Scholar 

  8. Wei PS, Chung FK (2000) Unsteady Marangoni flow in a molten pool when welding dissimilar metals. Metall Mater Trans B 31:1387 doi:10.1007/s11663-000-0024-0

    Article  Google Scholar 

  9. Taylor GA, Hughes M, Strusevich N, Pericleous K (2002) Finite volume methods applied to the computational modelling of welding phenomena. Appl Math Model 26:311 doi:10.1016/S0307-904X(01)00063-4

    Article  MATH  Google Scholar 

  10. Jaidi J, Dutta P (2004) Three-dimensional turbulent weld pool convection in gas metal arc welding process. Sci Technol Weld Join 9:407 doi:10.1179/136217104225021814

    Article  Google Scholar 

  11. Mishra S, Chakraborty S, DebRoy T (2005) Probing liquation cracking and solidification trough modeling of momentum, heat, and solute transport during welding of aluminum alloys. J Appl Phys 97(1–9):094912

    Article  Google Scholar 

  12. Kamtekar AG (1978) The calculation of welding residual stresses in thin steel plates. Int J Mech Sci 20:207 doi:10.1016/0020-7403(78)90083-8

    Article  MATH  Google Scholar 

  13. Murthy YVLN, Venkata G, Krishna Iyer P (1996) Numerical simulation of welding an quenching processes using transient thermal and thermo-elasto-plastic formulations. Comput Struc 60:131 doi:10.1016/0045-7949(95)00359-2

    Article  MATH  Google Scholar 

  14. Choi J, Mazumder J (2002) Numerical and experimental analysis for solidification and residual stress in the GMAW process for AISI 304 stainless steel. J Mater Sci 37:2143 doi:10.1023/A:1015258322780

    Article  Google Scholar 

  15. Sunar M, Yilbas BS, Boran K (2006) Thermal and stress analysis of a metal sheet in welding. J Mater Proc Tech 172:123 doi:10.1016/j.jmatprotec.2005.09.008

    Article  Google Scholar 

  16. Zhao H, DebRoy T (2001) Weld metal composition change during conduction mode laser welding of aluminum alloy 5182. Metab Trans B 32B:163–172 doi:10.1007/s11663-001-0018-6

    Article  Google Scholar 

  17. Mishra S, DebRoy T (2004) Measurements and Monte Carlo simulation of grain growth in the heat-affected zone of Ti-6AL-4V welds. Acta Mater 52:1183–1192 doi:10.1016/j.actamat.2003.11.003

    Article  Google Scholar 

  18. Watt SF, Coon L, Bibby M, Goldak J, Henwood C (1988) An algorithm for modelling microstructural development in weld heat-affected zones part A: reaction kinetics. Acta Metall 36:3029 doi:10.1016/0001-6160(88)90185-X

    Article  Google Scholar 

  19. Kumar A, Mishra S, Elmer JW, DebRoy T (2005) Optimization of the Johnson–Mehl–Avarami equation parameters for a-ferrite to g-austenite transformation in steel welds using a genetic algorithm. Metall Mater Trans A 36:15–22 doi:10.1007/s11661-005-0134-z

    Article  Google Scholar 

  20. Hong T, DebRoy T (2001) Effects of time, temperature, and steel composition on growth and dissolution of inclusions in liquid steels. Ironmak Steelmak 28(6):450 doi:10.1179/030192301678316

    Article  Google Scholar 

  21. Khurana SP, Yancey R, Jung G (2004) Prediction of microstructure in HAZ of welds. AIP Conf Proc 712:1219 doi:10.1063/1.1766695

    Article  Google Scholar 

  22. Thiessen RG, Richardson IM, Sietsma J (2006) Physically based modelling of phase transformations during welding of low-carbon steel. Mater Sci Eng A 427:223 doi:10.1016/j.msea.2006.04.076

    Article  Google Scholar 

  23. Farzadi A, Serajzadeh S, Kokabi AH Modeling of heat transfer and fluid flow during gas tungsten arc welding of commercial pure aluminum. Int J Adv Manuf Technol doi:10.1007/s00170-007-1106-9

  24. Kou S, Wang YH (1986) Weld pool convection and its effect. Weld J 65:63s

    Google Scholar 

  25. Kou S (2000) Welding Metallurgy 2nd edition, University of Wisconsin, pp 199–202

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Serajzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamshidi Aval, H., Farzadi, A., Serajzadeh, S. et al. Theoretical and experimental study of microstructures and weld pool geometry during GTAW of 304 stainless steel. Int J Adv Manuf Technol 42, 1043–1051 (2009). https://doi.org/10.1007/s00170-008-1663-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1663-6

Keywords

Navigation