Skip to main content
Log in

Simulation of Heat Flow During the Welding of Thin Plates

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Based on the finite difference method and the enthalpy model of Shamsundar, a computer model was developed to describe the steady state, two-dimensional heat flow during the welding of thin plates. In order to allow accurate computations of the weld pool configuration, the size of the mushy zone and the temperature distribution near the heat source, a grid mesh of variable spacings was used. The heat of fusion, the size and distribution of the heat source, the temperature dependence of thermal properties, the heat conduction in the welding direction and the surface heat loss during welding were considered. The model was first checked with Rosenthal’s analytical solution of welding heat flow using pure aluminum for examples. Experimental results of 6061 aluminum, including the width of the fusion zone and the thermal cycles at positions in both the fusion and the heat affected zones, were then compared with the calculated results of the heat flow model. The agreement was very good. Finally, in order to demonstrate systematically the quantitative effect of welding parameters such as the heat input, the welding speed and the preheating of the workpiece, a series of computations were made based upon 6061 aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. F. Savage and A. H. Aronson:Weld. J., 1966, vol. 45, pp. 85s-89s.

    Google Scholar 

  2. W. F. Savage, E. F. Nippes, and J. S. Erickson:Weld. J., 1976, vol. 55, pp. 213s-21s.

    Google Scholar 

  3. S. A. David and C. T. Liu:Met. Technol., 1980, vol. 7, pp. 102–06.

    CAS  Google Scholar 

  4. J. E. Gould and J. C. Williams: Private Communication, Carnegie-Mellon University, Pittsburgh, PA, 1981.

  5. T. Ganaha, B. P. Pearce, and H. W. KernMetall. Trans. A, 1980, vol. 11 A, pp. 1351–59.

    Google Scholar 

  6. D. Rosenthal:Weld. J., 1941, vol. 20, pp. 220s-34s.

    Google Scholar 

  7. W. F. Hess, L. L. Merrill, E. F. N ppes, Jr., and A. P. Bunk:Weld. J., 1943, vol. 22, pp.377s-422s.

    Google Scholar 

  8. N. N. Rykalin:Calculation of Heat Processes during Welding, VEB-Verlag Technik, Berlin, 1957.

    Google Scholar 

  9. P. S. Myers, O. A. Uyehara, and G. L. Borman:Weld. Res. Counc. Bull., July, 1967, no. 123.

  10. R. J. Grosh, E. A. Trabant, and G. A. Hawkins:Q. Appl. Math., 1955, vol. 13, pp. 161–67.

    Google Scholar 

  11. D. T. Swift-Hook and A. E. F. Gick:Weld. J., 1973, vol. 52, pp. 492s-99s.

    Google Scholar 

  12. P. Jhaveri, W. G. Moffatt, and C. M. Adams, Jr.:Weld. J., 1962, vol. 41, pp. 12s-16s.

    Google Scholar 

  13. H. Ghent, C. E. Hermanee, H. W. Kerr, and A. B. Strong: Arc Physics and Weld Pool Behavior, Conference Proceedings, The Welding Institute, Cambridge, U.K., 1979.

    Google Scholar 

  14. R. Trivedi and S. R. Srinivason:J. Heat Transfer, 1974, vol. 96, pp.427–28.

    Google Scholar 

  15. V. Pavelic, R. Tanbakuchi, O. A. Uyehara, and P. S. Myers:Weld. J., 1969, vol. 48, pp.295s-305s.

    Google Scholar 

  16. E. Friedman:J. Pressure Vessel Technol., 1975, vol. 97J, pp. 206–13.

    Google Scholar 

  17. E. Friedman:Nuclear Metall., 1976, vol. 20, pp. 1160–70.

    Google Scholar 

  18. Y. Sharir, A. Grill, and J. Pelleg:Metall. Trans. B, 1980, vol. 1 IB, pp. 257–65.

    Google Scholar 

  19. N. Shamsundar and E. M. Sparrow:J. Heat Transfer, 1975, vol. 97, pp. 333–40.

    Google Scholar 

  20. E. A. Mizikar:Trans. TMS-AIME, 1967, vol. 239, pp. 1947–1753.

    Google Scholar 

  21. W. Kaplan:Operational Methods for Linear Systems, p. 49, Addison-Wesley, 1962.

  22. J. P. Holman:Heat Transfer, 4th ed., p. 342, McGraw-Hill, 1976.

  23. M. C. Flemings:Solidification Processing, p. 35, McGraw-Hill, 1974.

  24. Aluminum, K. R. Van Horn, ed., vol. I, pp. 8 and 17, ASM, 1967.

  25. Aluminum Standards and Data, 4th ed., p. 40, the Aluminum Association, 1976.

  26. S. Kou, T. Kanevsky, and S. Fyfitch: Weld. J., in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kou, S. Simulation of Heat Flow During the Welding of Thin Plates. Metall Trans A 12, 2025–2030 (1981). https://doi.org/10.1007/BF02644171

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644171

Keywords

Navigation