Skip to main content
Log in

Precision radial turning of AISI D2 steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper compares finite element model (FEM) simulations with experimental and analytical findings concerning precision radial turning of AISI D2 steel. FEM machining simulation employs a Lagrangian finite element-based machining model applied to predict cutting and thrust forces, cutting temperature and plastic strain distribution. The results show that the difference between the experimental and simulated cutting force is near 20%, irrespectively of the friction coefficient used in the simulation work (approximately 19.8% for a friction of 0.25% and 18.4% for the Coulomb approach). Concerning the thrust force, differences of about 22.4% when using a friction coefficient of μ = 0.25 and about 56.9% when using the Coulomb friction coefficient (μ = 0.378) were found. The maximum cutting temperature obtained using the analytical model is 494.07°C and the difference between experimentation and simulation methods is 15.2% when using a friction coefficient of 0.25 and when using the Coulomb friction only 3.1%. Regarding the plastic strain, the differences between analytical calculations and FEM simulations (for the presented friction values) suggest that the finite element method is capable of predictions with reasonable precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trent EM, Wright PK (2000) Metal Cutting. Butterworth-Heinemann, Oxford

    Google Scholar 

  2. Marusich TD, Oriz M (1995) Modelling and simulation of high speed machining. Int J Numer Methods Eng 38:3675–3694 doi:10.1002/nme.1620382108

    Article  MATH  Google Scholar 

  3. Bil H, Kilic SE, Tekkaya AE (2004) A comparison of orthogonal cutting data from experiments with three different finite element models. Int J Mach Tools Manuf 44:933–944 doi:10.1016/j.ijmachtools.2004.01.016

    Article  Google Scholar 

  4. Ozel T (2006) The influence of friction models on finite element simulations of machining. Int J Mach Tools Manuf 46:518–530 doi:10.1016/j.ijmachtools.2005.07.001

    Article  Google Scholar 

  5. Ceretti E, Fallbohmer P, Wu WT, Altan T (1996) Application of 2D FEM to chip formation in orthogonal cutting. J Mater Process Technol 59:169–180 doi:10.1016/0924-0136(96)02296-0

    Article  Google Scholar 

  6. Qian L, Mohammad RH (2007) Effect on cutting force in turning hardened tool steels with cubic boron nitride inserts. J Mater Process Technol 191:274–278 doi:10.1016/j.jmatprotec.2007.03.022

    Article  Google Scholar 

  7. Mamalis AG, Horvath M, Branis AS, Manolakos DE (2001) Finite element simulation of chip formation in orthogonal metal cutting. J Mater Process Technol 110:19–27 doi:10.1016/S0924-0136(00)00861-X

    Article  Google Scholar 

  8. Filice L, Micari F, Rizzuti S, Umbrello D (2007) A critical analysis on the friction modelling in orthogonal machining. Int J Mach Tools Manuf 47:709–714 doi:10.1016/j.ijmachtools.2006.05.007

    Article  Google Scholar 

  9. Fang N (2005) Tool-chip friction in machining with a large negative rake angle tool. Wear 258:890–897 doi:10.1016/j.wear.2004.09.047

    Article  Google Scholar 

  10. Sartkulvanich P, Altan T (2005) Effects of flow stress and friction models in finite element simulation of orthogonal cutting—a sensitivity analysis. Mach Sci Technol 9:1–26 doi:10.1081/MST-200051211

    Article  Google Scholar 

  11. Geiger M, Kleiner M, Eckstein R, Tiesler N, Engel U (2001) Microforming Annals. CIRP 50(2):445–462

    Article  Google Scholar 

  12. Zorev N, Wallace P, Boothroyd G (1964) Tool forces and tool-chip friction in orthogonal machining. J Mech Eng Sci 6:422

    Google Scholar 

  13. Özel T, Zeren E (2007) Numerical modelling of meso-scale finish machining with finite edge radius tools. Int J Machining Machinability Mater 2(3/4):451–468

    Article  Google Scholar 

  14. Merchant ME (1945) Mechanics of metal cutting process I—orthogonal cutting and type 2 chip. J Appl Phys 16(5):267–275 doi:10.1063/1.1707586

    Article  Google Scholar 

  15. Boothroyd G, Knight WA (1989) Fundamentals of machining and machine tools, 2nd edn. Marcel Dekker, New York, p 542

    Google Scholar 

  16. Umbrello D, M’Saoubi R, Outeiro J (2007) The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel. Int J Mach Tools Manuf 47:462–470 doi:10.1016/j.ijmachtools.2006.06.006

    Article  Google Scholar 

  17. Outeiro J (2007) Influence of tool sharpness on the thermal and mechanical phenomena generated during machining operations. Int J Machining Machinability Mater 2(3/4):413–432

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Paulo Davim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davim, J.P., Maranhão, C., Faria, P. et al. Precision radial turning of AISI D2 steel. Int J Adv Manuf Technol 42, 842–849 (2009). https://doi.org/10.1007/s00170-008-1644-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1644-9

Keywords

Navigation