Skip to main content
Log in

Multi-response optimisation of WEDM process using principal component analysis

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Like many other processes, the wire electrical discharge machining (WEDM) process has several performance characteristics. Determination of the optimal process settings with respect to all these performance measures (responses) is an important issue. Taguchi’s robust design method can only be applied to optimise a single-response problem. Some researchers have attempted to optimise WEDM operations using a multi-response signal-to-noise (MRSN) ratio and constraint optimisation methods. Both these methods suffer from some weaknesses. The principal component analysis (PCA)-based approach for multi-response optimisation can effectively overcome those weaknesses. In this paper, some modifications in the PCA-based approach are suggested and two sets of experimental data published by the past researchers are analysed using this modified procedure. It is observed that the PCA-based optimisation can give better results than the constrained optimisation and MRSN ratio-based methods, which can be attributed to the fact that the possible correlation among the multiple responses is taken care in the PCA-based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McGeough JA (1988) Advanced methods of machining. Champman and Hall, London

    Google Scholar 

  2. Scott D, Boyina S, Rajurkar KP (1991) Analysis and optimization of parameter combination in wire electrical discharge machining. Int J Prod Res 29:2189–2207. doi:10.1080/00207549108948078

    Article  MATH  Google Scholar 

  3. Kozak J, Rajurkar KP, Wang SZ (1994) Material removal in WEDM of PCD Blanks. J Eng Ind 116:363–369

    Article  Google Scholar 

  4. Tarng YS, Ma SC, Chung LK (1995) Determination of optimal cutting parameters in wire electrical discharge machining. Int J Mach Tools Manuf 35:1693–1701. doi:10.1016/0890-6955(95)00019-T

    Article  Google Scholar 

  5. Liao YS, Huang JT, Su HC (1997) A study on the machining parameters optimization of wire electrical discharge machining. J Mater Process Technol 71:487–493. doi:10.1016/S0924-0136(97)00117-9

    Article  Google Scholar 

  6. Spedding TA, Wang ZG (1997) Parametric optimization and surface characteristic of wire electrical discharge machining process. Precis Eng 20:5–15. doi:10.1016/S0141-6359(97)00003-2

    Article  Google Scholar 

  7. Spedding TA, Wang ZG (1997) Study on modeling of wire EDM process. J Mater Process Technol 69:18–28. doi:10.1016/S0924-0136(96)00033-7

    Article  Google Scholar 

  8. Huang JT, Liao YS, Hsue WJ (1999) Determination of finish-cutting operation number and machining parameters setting in wire electrical discharge machining. J Mater Process Technol 87:69–81. doi:10.1016/S0924-0136(98)00334-3

    Article  Google Scholar 

  9. Tsai KM, Wang PJ (2001) Predictions on surface finish in electrical discharge machining based upon neural network models. Int J Mach Tools Manuf 41:1385–1403. doi:10.1016/S0890-6955(01)00028–1

    Article  Google Scholar 

  10. Phadke MS (1989) Quality engineering using robust design. Prentice Hall, Englewood Cliffs

    Google Scholar 

  11. Sarkar S, Mitra S, Bhattacharyya B (2005) Parametric analysis and optimization of wire electrical discharge machining of -titaninum aluminide alloy. J Mater Process Technol 159:286–294. doi:10.1016/j.jmatprotec.2004.10.009

    Article  Google Scholar 

  12. Ramakrishnan R, Karunamoorthy L (2006) Multi response optimization of wire EDM operations using robust design of experiments. Int J Adv Manuf Technol 29:105–112. doi:10.1007/s00170-004-2496–6

    Article  Google Scholar 

  13. Su CT, Tong LI (1997) Multi-response robust design by principal component analysis. Total Quality Management 8:409–416. doi:10.1080/0954412979415

    Article  Google Scholar 

  14. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2:559–572

    Google Scholar 

  15. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educational Psychology 24:417–441. doi:10.1037/h0071325

    Article  Google Scholar 

  16. Jambu M (1991) Exploratory and multivariate data analysis. Academic Press

  17. Ross PJ (1988) Taguchi techniques for quality engineering. McGraw-Hill, New York

    Google Scholar 

  18. Kaiser HF (1960) The application of electronic computers to factor analysis. Education and psychological measurement 20:141–151. doi:10.1177/001316446002000116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauri, S.K., Chakraborty, S. Multi-response optimisation of WEDM process using principal component analysis. Int J Adv Manuf Technol 41, 741–748 (2009). https://doi.org/10.1007/s00170-008-1529-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1529-y

Keywords

Navigation