Skip to main content

Advertisement

Log in

Multi-regional economic growth with public good and regional fiscal policies in a small-open economy

  • Original Paper
  • Published:
The Annals of Regional Science Aims and scope Submit manuscript

Abstract

This paper is concerned with multi-regional economic growth with environment, capital accumulation and regional public goods. The economy has a fixed number of regions, and there are a production sector and a public sector in a region. The production sector provides goods in perfectly competitive markets. The public sector, which is financed by the regional government’s tax incomes, supplies regional public goods. The public goods affect both firms and households. We show the existence of a unique equilibrium in the dynamic system. We simulate the equilibrium of 3-region economy and examine effects of changes in some parameters on the spatial economy. The comparative statics analysis provides some important insights. For instance, as the technologically least advanced region (TLAR) improves its productivity or amenity, the national output and wealth are reduced, and more people are attracted to the region from the more productive regions. The labor forces in the TLAR’s two sectors are increased, and the labor forces in the other two regions are reduced. The change pattern for the capital distribution is similar to the change in the population distribution. The output levels of the two sectors in the TLAR are increased and in the other two regions are reduced. The TLAR’s total and per capita expenditures on public goods are increased; the other two regions’ total and per capita expenditures are reduced. The per-worker output level, wealth and consumption level per capita, wage rate in the TLAR are increased, and those variables in the other two regions are reduced. The lot size falls and the land rent rises in the TLAR, and the trends are opposite in the other two regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel AB, Bernanke BS (1998) Macroeconomics, 3rd edn. Addison-Wesley, New York

    Google Scholar 

  • Andersson F, Forslid R (2003) Tax competition and economic geography. J Public Econ Theory 5:279–303

    Article  Google Scholar 

  • Arcalean C, Glomm G, Schiopu I (2012) Growth effects of spatial redistribution policies. J Econ Dyn Control 36:988–1008

    Article  Google Scholar 

  • Baldwin RE, Krugman P (2004) Agglomeration, integration and tax harmonization. Eur Econ Rev 48:1–23

    Article  Google Scholar 

  • Bayindir-Upmann T, Ziad A (2005) Existence of equilibria in a basic tax competition model. Reg Sci Urban Econ 35:1–22

    Article  Google Scholar 

  • Barro RJ (1990) Government spending in a simple model of endogenous growth. J Polit Econ 98:S103–S125

    Article  Google Scholar 

  • Benigno G, Benigno P (2003) Price stability in open economies. Rev Econ Stud 70:743–764

    Article  Google Scholar 

  • Borck R, Pflüger M (2006) Agglomeration and tax competition. Eur Econ Rev (in Press)

  • Brecher RA, Chen ZQ, Choudhri EU (2002) Absolute and comparative advantage, reconsidered: the pattern of international trade with optimal saving. Rev Int Econ 10:645–656

    Article  Google Scholar 

  • Chi GQ, Marcouiller DW (2013) Natural amenities and their effects on migration along the urban-rural continuum. Ann Reg Sci (forthcoming)

  • Costa DL, Kahn ME (2003) The rising price of nonmarket goods. Am Econ Rev 93:227–232

    Article  Google Scholar 

  • Deardorff AV (1973) The gains from trade in and out of steady state growth. Oxf Econ Pap 25:173–191

    Google Scholar 

  • Eaton J (1987) A dynamic specific-factors model of international trade. Rev Econ Stud 54:325–338

    Article  Google Scholar 

  • Eicher T, Turnovsky S (2000) Scale, congestion and growth. Economica 67:325–346

    Article  Google Scholar 

  • Findlay R (1984) Growth and development in trade models. In: Jones RW, Kenen RB (eds) Handbook of international economics. North-Holland, Amsterdam

    Google Scholar 

  • Fujita M, Krugman P, Venables A (1999) The spatial economy. MIT Press, Cambridge

    Google Scholar 

  • Gali J, Monacelli T (2005) Monetary policy and exchange rate volatility in a small open economy. Rev Econ Stud 72:707–734

    Article  Google Scholar 

  • Glaeser EL (2008) Cities, agglomeration, and spatial equilibrium. Oxford University Press, Oxford

    Google Scholar 

  • Glomm G, Ravikumar B (1997) Productive government expenditures and long-run growth. J Econ Dyn Control 21:183–204

    Article  Google Scholar 

  • Gómez MA (2008) Fiscal policy, congestion, and endogenous growth. J Public Econ Theory 10:595–622

    Article  Google Scholar 

  • Graves PE (1976) A reexamination of migration, economic opportunity, and the quality of life. J Reg Sci 16:107–112

    Article  Google Scholar 

  • Henderson JV (1974) The sizes and types of cities. Am Econ Rev 64:640–656

    Google Scholar 

  • Henderson JV, Wang HG (2007) Urbanization and city growth: the role of institutions. Reg Sci Urban Econ 37:283–313

    Article  Google Scholar 

  • Higano Y, Nijkamp P, Poot J, Wyk KV (eds) (2002) The region in the new economy: an international perspective on regional dynamics in the 21st century. Ashagate, London

  • Itoh R (2013) Regional income disparities in an OLG structure. Ann Reg Sci 50:185–202

    Article  Google Scholar 

  • Jha R (1998) Modern public economics. Routledge, London

    Book  Google Scholar 

  • Jha R (2003) Macroeconomics for developing countries. Routledge, New York

    Book  Google Scholar 

  • Johansson B, Klaesson J (2010) Agglomeration dynamics of business services. Ann Reg Sci 47:373–391

    Article  Google Scholar 

  • Kemeny T, Storper M (2012) The sources of Urban development: wages, housing, and amenity gaps across American cities. J Reg Sci 52:82–108

    Article  Google Scholar 

  • Lee W, Choe B (2012) Agglomeration effect and tax competition in the metropolitan area. Ann Reg Sci 49:789–803

    Article  Google Scholar 

  • Lucas RE, Rossi-Hansberg E (2002) On the internal structure of cities. Econometrica 70:1445–1476

    Article  Google Scholar 

  • Obstfeld M, Rogoff K (1998) Foundations of international macroeconomics. MIT Press, Mass

    Google Scholar 

  • Obstfeld M, Rogoff K (1999) New directions for stochastic open economy models. J Int Econ 50:117–153

    Article  Google Scholar 

  • Ogawa H, Fujita M (1980) Equilibrium land use pattern in a non-monocentric city. J Reg Sci 20:455–475

    Article  Google Scholar 

  • Oniki H, Uzawa H (1965) Patterns of trade and investment in a dynamic model of international trade. Rev Econ Stud 32:15–38

    Article  Google Scholar 

  • Rappaport J (2007) Moving to nice weather. Reg Sci Urban Econ 37:375–398

    Article  Google Scholar 

  • Rappaport J (2008) Consumption amenities and city population density. Reg Sci Urban Econ 38:533–552

    Article  Google Scholar 

  • Rappaport J (2009) The increasing importance of quality of life. J Econ Geogr 9:779–804

    Article  Google Scholar 

  • Richardson HW (1977) Regional growth theory. Macmillan, London

    Google Scholar 

  • Roback J (1982) Wages, rents, and the quality of life. J Polit Econ 90:1257–1278

    Article  Google Scholar 

  • Rossi-Hansberg E, Sarte PD, Owens R III (2009) Firm fragmentation and Urban patterns. Int Econ Rev 50:143–186

    Article  Google Scholar 

  • Ruffin RJ (1979) Growth and the long-run theory of international capital movements. Am Econ Rev 69:832–842

    Google Scholar 

  • Scotchmer S, Thisse JF (1992) Space and competition—a puzzle. Ann Reg Sci 26:269–286

    Article  Google Scholar 

  • Shapiro JM (2006) Smart cities: quality of life, and the growth effects of human capital. Rev Econ Stat 88:324–335

    Article  Google Scholar 

  • Sorger G (2002) On the multi-region version of the Solow–Swan model. Jpn. Econ. Rev. 54:146–164

    Article  Google Scholar 

  • Turnovsky SJ (2000) Fiscal policy, elastic labor supply, and endogenous growth. J Monet Econ 45:185–210

    Article  Google Scholar 

  • Turnovsky SJ (2004) The transitional dynamics of fiscal policy: long-run capital accumulation and growth. J Money Credit Banking 36:883–910

    Article  Google Scholar 

  • Wilson JD (1985) Optimal property taxation in the presence of interregional capital mobility. J Urban Econ 17:73–89

    Article  Google Scholar 

  • Wilson JD (1986) A theory of interregional tax competition. J Urban Econ 19:296–315

    Article  Google Scholar 

  • Zhang WB (1993) Wages, service prices and rent—Urban division of labor and amenities. Seoul J Econ 6:97–113

    Google Scholar 

  • Zhang WB (2008) Leisure, amenity, and capital accumulation in a multi-region model. Ann Reg Sci 42:183–207

    Article  Google Scholar 

  • Zhang WB (2009) Agglomeration and returns to scale with capital and public goods in a multi-regional economy. Int Econ J 23:81–109

    Article  Google Scholar 

  • Zodrow GR, Mieszkowski P (1986) Pigou, tiebout, property taxation, and the underprovision of local public goods. J Urban Econ 19:356–370

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Editor Börje Johansson and two anonymous referees for valuable comments and constructive suggestions. The author is also grateful for the financial support from the Grants-in-Aid for Scientific Research (C), Project No. 25380246, Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Bin Zhang.

Appendix proving Lemma 1

Appendix proving Lemma 1

By (9), we have \(s_j = \bar{{k}}_j \) at steady state. From this equation and \(s_j = \lambda \hat{{y}}_j \), we have \(\hat{{y}}_j = \bar{{k}}_j /\lambda \). From (2) and (14), we solve

$$\begin{aligned} \tilde{k}_j \equiv \frac{K_{pj} }{K_{ij} } = \frac{\alpha N_{pj} }{N_{ij} }, \end{aligned}$$

where \(\alpha \equiv \alpha _{p}\beta _{i}/ \alpha _{i}\beta _{p}\). From this equation, \(N_{j}=N_{ij}+N_{pj}\) and \(K_{j}=K_{ij}+K_{pj}\), we solve

$$\begin{aligned} \begin{aligned}&N_{ij} = \frac{\alpha N_j }{\alpha + \tilde{k}_j }, N_{pj} = \frac{\tilde{k}_j N_j }{\alpha + \tilde{k}_j },\\&K_{ij} = \frac{K_j }{1 + \tilde{k}_j }, K_{pj} = \frac{\tilde{k}_j K_j }{1 + \tilde{k}_j }. \end{aligned} \end{aligned}$$
(23)

From the definition of \(\Omega _{j}(t)\), (11) and (23), we can express the production functions as follows

$$\begin{aligned} F_{ij} = \frac{\bar{{A}}_j \tilde{k}_j^{\bar{{\theta }}} K_j^{\bar{{\alpha }}} N_j^{\bar{{\beta }}} }{\left( {1 + \tilde{k}_j } \right) ^{\bar{{\alpha }}} \left( {\alpha + \tilde{k}_j } \right) ^{\bar{{\beta }}}}, \end{aligned}$$
(24)

where

$$\begin{aligned} \bar{{\theta }} \equiv \theta _p \alpha _{0p} + \theta _c + \theta _p \beta _{0p}, \bar{{\alpha }} \equiv \alpha _i + \theta _e + \theta _p \alpha _{0p}, \bar{{\beta }} \equiv \beta _i + \theta _p \beta _{0p}, \bar{{A}}_j \equiv A_{ij} A_{pj}^{\theta _p } \alpha ^{\beta _i }. \end{aligned}$$

From (1), (23) and (24), we have

$$\begin{aligned} r^{*} + \delta _k = \frac{\alpha _i \bar{{\tau }}_{ij} \bar{{A}}_j \tilde{k}_j^{\bar{{\theta }}} K_j^{\bar{{\alpha }}-1} N_j^{\bar{{\beta }}} }{\left( {1 + \tilde{k}_j } \right) ^{\bar{{\alpha }}-1} \left( {\alpha + \tilde{k}_j } \right) ^{\bar{{\beta }}}}, w_j = \frac{\left( {r^{*} + \delta _k } \right) \beta _i K_j \left( {\alpha + \tilde{k}_j } \right) }{\alpha \alpha _{i} N_{j}\left( {1 + \tilde{k}_{j}}\right) }. \end{aligned}$$
(25)

From the definition of \(\hat{{y}}_j \) and \(\hat{{y}}_j = \bar{{k}}_j /\lambda \), we solve \(w_j = r_j^{*} \bar{{k}}_j \),where

$$\begin{aligned} r_j^*\equiv \frac{1/\lambda - 1 - \bar{{\tau }}_{rj} r^{*}}{\bar{{\tau }}_{wj} }. \end{aligned}$$

From \(w_j = r_j^*\bar{{k}}_j \) and (25)

$$\begin{aligned} \bar{{k}}_j = \frac{\left( {r^{*} + \delta _k } \right) \beta _i K_j \left( {\alpha + \tilde{k}_j } \right) }{\alpha \alpha _i r_j^{*} N_j \left( {1 + \tilde{k}_j } \right) }. \end{aligned}$$
(26)

From the marginal conditions for capital in (25), we have

$$\begin{aligned} K_j = \Lambda _{K} K_{1}, j = 1,\ldots , J, \end{aligned}$$

where

$$\begin{aligned} \Lambda _{Kj} \equiv \left[ {\frac{\bar{{\tau }}_{i1} \bar{{A}}_1 \tilde{k}_1^{\bar{{\theta }}} N_1^{\bar{{\beta }}} \left( {\alpha + \tilde{k}_j } \right) ^{\bar{{\beta }}}}{\bar{{\tau }}_{ij} \bar{{A}}_j \tilde{k}_j^{\bar{{\theta }}} N_j^{\bar{{\beta }}} \left( {\alpha + \tilde{k}_1 } \right) ^{\bar{{\beta }}}}} \right] ^{1/\left( {\bar{{\alpha }}-1} \right) }\frac{1 + \tilde{k}_j }{1 + \tilde{k}_1 }. \end{aligned}$$

From \(K_{2}=\Lambda _{K}K_{1}\) and \(\sum _{j}K_{j}=K\), we have

$$\begin{aligned} K_j = \frac{\Lambda _{Kj} K}{\sum _1^J {\Lambda _{Kj} } }, j = 1, \ldots , J, \end{aligned}$$
(27)

where \(\Lambda _{K1} = 1\). Insert \(l_{j}=L_{j}/ N_{j}\), \(c_j = \xi \hat{{y}}_j \), and \(s_j = \lambda \hat{{y}}_j \) in the utility function

$$\begin{aligned} U_j = \bar{{\theta }}_j \xi ^{\xi _h } \lambda ^{-\xi _h }A_{pj}^{v_h } L_j^{\eta _h } \frac{K_j^{v_h \alpha _{0p} } \tilde{k}_j^{v_h \beta _{0p} +v_h \alpha _{0p} } N_j^{b-\eta _h +v_h \beta _{0p} } \bar{{k}}_j^{\xi _h +\lambda _h } }{\left( {\alpha + \tilde{k}_j } \right) ^{v_h \beta _{0p} } \left( {1 + \tilde{k}_j } \right) ^{v_h \alpha _{0p} }}, \end{aligned}$$
(28)

where we use (7), (11) and \(\hat{{y}}_j = \bar{{k}}_j /\lambda \). From (28), (26) and \(U_{j}=U_{1}\), we have

$$\begin{aligned} N_j = \Lambda _{Nj} N_1, j = 2,...\ldots , J, \end{aligned}$$

where

$$\begin{aligned} \Lambda _{Nj} \left( {\tilde{k}_1, \tilde{k}_j } \right) \!\equiv \! \theta _{uj} \left( {\frac{\tilde{k}_1}{\tilde{k}_j}} \right) ^{\left[ {v_h \beta _{0p} \!+\!v_h \alpha _{0p} \!-\!\bar{{\theta }}\xi _u /\left( {\bar{{\alpha }}\!-\!1} \right) } \right] \lambda _u }\left( {\frac{\alpha + \tilde{k}_j }{\alpha \!+\! \tilde{k}_1 }} \right) ^{\left[ {v_h \beta _{0p} \!-\!\xi _h \!-\!\lambda _h \!-\!\bar{{\beta }}\xi _u /\left( {\bar{{\alpha }}-1} \right) } \right] \lambda _u }, \end{aligned}$$

where

$$\begin{aligned} \xi _u&\equiv v_h \alpha _{0p} +\xi _h +\lambda _h, \lambda _u \equiv \left( {b - \eta _h + v_h \beta _{0p} - \xi _h - \lambda _h - \frac{\xi _u \bar{{\beta }}}{\bar{{\alpha }}-1}} \right) ^{-1}, \\ \theta _{uj}&\equiv \left[ {\frac{r_j^{*\left( {\xi _h +\lambda _h } \right) } \bar{{\theta }}_1 A_{p1}^{v_h } L_1^{\eta _h } }{r_1^{*\left( {\xi _h +\lambda _h } \right) } \bar{{\theta }}_j A_{pj}^{v_h } L_j^{\eta _h } }} \right] ^{\lambda _u } \left( {\frac{\bar{{\tau }}_{ij} \bar{{A}}_j }{\bar{{\tau }}_{i1} \bar{{A}}_1 }} \right) ^{\xi _u \lambda _u /\left( {\bar{{\alpha }}-1} \right) } \end{aligned}$$

From \(N_{j}=\Lambda _{N}N_{1}\) and the full labor employment condition, we have

$$\begin{aligned} N_j = \frac{\Lambda _{Nj} N}{\sum _{j=1}^J {\Lambda _{Nj} } }, j = 1 , \ldots , J, \end{aligned}$$
(29)

where \(\Lambda _{N1} = 1\). From the definition of \(\Lambda _{Kj}\) and (28)

$$\begin{aligned} \Lambda _{Kj} \left( {\tilde{k}_1, \tilde{k}_j} \right) = \left[ {\frac{\bar{{\tau }}_{i1} \bar{{A}}_1 \tilde{k}_1^{\bar{{\theta }}} \left( {\alpha + \tilde{k}_j } \right) ^{\bar{{\beta }}}}{\bar{{\tau }}_{ij} \bar{{A}}_j \tilde{k}_j^{\bar{{\theta }}} \Lambda _{Nj}^{\bar{{\beta }}} \left( {\alpha + \tilde{k}_1 } \right) ^{\bar{{\beta }}}}} \right] ^{1/\left( {\bar{{\alpha }}-1} \right) }\frac{1 + \tilde{k}_j }{1 + \tilde{k}_1 }, j = 2, \ldots , J. \end{aligned}$$
(30)

From (14) and (23), we have

$$\begin{aligned} K_j = \frac{\alpha _p \left( {1 + \tilde{k}_j } \right) }{\left( {r^{*} + \delta _k } \right) \tilde{k}_j }Y_{pj}. \end{aligned}$$
(31)

From the definition of \(Y_{pj}\), we have

$$\begin{aligned} Y_{pj} = \left( {\frac{\alpha \tau _{ij} r_j^*}{\beta _i \bar{{\tau }}_{ij} \left( {\alpha + \tilde{k}_j } \right) } + \tau _{rj} r^{*} + \tau _{wj} r_j^*} \right) \bar{{k}}_j N_j, \end{aligned}$$
(32)

where we use \(F_{ij} = w_j N_{ij} / \beta _i \bar{{\tau }}_{ij}, \quad w_j = r_j^*\bar{{k}}_j \), and the equation for \(N_{ij}\) in (23). Substituting (32) into (31) yields

$$\begin{aligned} \tilde{k}_j = \left( {\frac{\alpha \tau _{ij} r_j^*}{\beta _i \bar{{\tau }}_{ij} } + \alpha \left( {\tau _{rj} r^{*} + \tau _{wj} r_j^*} \right) } \right) \left( {\frac{r_j^*}{\beta _p } - \tau _{rj} r^{*} - \tau _{wj} r_j^*} \right) ^{-1}. \end{aligned}$$
(33)

The above equations determine the equilibrium values of \(\tilde{k}_j \). From (29), we determine \(N_{j}\) as functions of \(\tilde{k}_j \). By (23), \(N_{ij}\) and \(N_{pj}\) are determined. The equilibrium values of \(K_{j}\) are found by the marginal conditions for capital in (25). We have \(K=\sum _{j}K_{j}\) and \(w_{j}\) by (25). We determine \(K_{ij}\) and \(K_{pj}\) by (23) and \(Y_{pj}\) by (32). It is straightforward to get \(F_{ij}\) by (24) and \(F_{pj}\) by (11). The equilibrium values of \(\bar{{k}}_j \) are solved by (26) and \(\hat{{y}}_j \) by (5). From (8), we have \(l_{j}=L_{j}/ N_{j}\) and \(R_j = \eta \hat{{y}}_j /l_j \). We determine \(c_{j}\) and \(s_{j}\) by (8). We have \(C_{j}=c_{j}N_{j}\) and \(S_{j}=s_{j}N_{j}\). We thus proved Lemma 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, WB. Multi-regional economic growth with public good and regional fiscal policies in a small-open economy. Ann Reg Sci 52, 409–429 (2014). https://doi.org/10.1007/s00168-014-0592-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00168-014-0592-6

JEL Classification

Navigation