Skip to main content

Advertisement

Log in

Harvest location has a minimal impact on differences in cross-sectional area of quadriceps tendon in anterior cruciate ligament reconstruction

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Anterior cruciate ligament (ACL) reconstruction with quadriceps tendon (QT) has been gaining popularity. However, it is unknown how differences in harvest location of the QT affect its thickness and cross-sectional area (CSA). The present study aimed to clarify the differences in thickness and CSA of the QT based on location of tendon harvesting.

Methods

Patients scheduled for, or who underwent, ACL reconstruction were prospectively included in the study. The short-axis images on ultrasound were used to assess the CSA of the QT at 30 and 60 mm proximal to the superior pole of the patella. QT autografts with CSAs greater than or equal to 10 mm of width were included and measured at three different locations, namely the center, medial one-third, and lateral one-third at the widest diameter of the QT. Patients with less than 10-mm width of the QT at 60 mm proximal to the superior pole of the patella were excluded. The thickness and CSA were compared based on the location of tendon harvest.

Results

Thirty-seven patients were recruited for the study. The mean thickness and CSA were larger in the center of the QT compared to the lateral one-third at 30 mm proximal to the superior pole of the patella (thickness, 6.7 ± 1.3 mm vs. 5.9 ± 1.3 mm; P = 0.009; CSA, 65.6 ± 11.4 mm2 vs. 58.8 ± 11.9 mm2; P = 0.036). There were no significant differences in thickness and CSA of the QT among the three assessment locations at 60 mm proximal to the superior pole of the patella (n.s.).

Conclusion

The thickness and CSA of QT was greater in the center compared to the lateral one-third at 30 mm proximal to the QT insertion point. However, the difference in value was clinically non-significant, and therefore, harvest location of the QT autograft may not meaningfully impact intraoperative graft diameter. As a result, surgeons may choose the harvest location without concern for resultant graft diameter as long as the enough length of QT is secured.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Raw data that support the findings of this study were generated at the University of Pittsburgh. Derived data supporting the findings of this study are available from the corresponding author on request.

References

  1. Crum RJ, Kay J, Lesniak BP, Getgood A, Musahl V, de Sa D (2021) Bone versus all soft tissue quadriceps tendon autografts for anterior cruciate ligament reconstruction: a systematic review. Arthroscopy 37:1040–1052

    Article  PubMed  Google Scholar 

  2. Dai W, Leng X, Wang J, Cheng J, Hu X, Ao Y (2022) Quadriceps tendon autograft versus bone-patellar tendon-bone and hamstring tendon autografts for anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med 50:3425–3439

    Article  PubMed  Google Scholar 

  3. Diermeier T, Tisherman R, Hughes J, Tulman M, Baum Coffey E, Fink C et al (2020) Quadriceps tendon anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 28:2644–2656

    Article  PubMed  Google Scholar 

  4. Diermeier TA, Rothrauff BB, Engebretsen L, Lynch A, Svantesson E, Hamrin Senorski EA et al (2021) Treatment after ACL injury: panther symposium ACL treatment consensus group. Br J Sports Med 55:14–22

    Article  PubMed  Google Scholar 

  5. Ferrer GA, Miller RM, Murawski CD, Tashman S, Irrgang JJ, Musahl V et al (2016) Quantitative analysis of the patella following the harvest of a quadriceps tendon autograft with a bone block. Knee Surg Sports Traumatol Arthrosc 24:2899–2905

    Article  PubMed  Google Scholar 

  6. Ferretti M, Ekdahl M, Shen W, Fu FH (2007) Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy 23:1218–1225

    Article  PubMed  Google Scholar 

  7. Fu FH, Rabuck SJ, West RV, Tashman S, Irrgang JJ (2019) Patellar fractures after the harvest of a quadriceps tendon autograft with a bone block: a case series. Orthop J Sports Med 7:2325967119829051

    PubMed  PubMed Central  Google Scholar 

  8. Fujimaki Y, Thorhauer E, Sasaki Y, Smolinski P, Tashman S, Fu FH (2016) Quantitative in situ analysis of the anterior cruciate ligament: Length, midsubstance cross-sectional area, and insertion site areas. Am J Sports Med 44:118–125

    Article  PubMed  Google Scholar 

  9. Guenther D, Irarrázaval S, Albers M, Vernacchia C, Irrgang JJ, Musahl V et al (2017) Area of the tibial insertion site of the anterior cruciate ligament as a predictor for graft size. Knee Surg Sports Traumatol Arthrosc 25:1576–1582

    Article  PubMed  Google Scholar 

  10. Harris NL, Smith DA, Lamoreaux L, Purnell M (1997) Central quadriceps tendon for anterior cruciate ligament reconstruction, part I: morphometric and biomechanical evaluation. Am J Sports Med 25:23–28

    Article  CAS  PubMed  Google Scholar 

  11. Howell SM (1998) Principles for placing the tibial and avoiding roof impingement during reconstruction of a torn anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 6(Suppl 1):S49-55

    Article  PubMed  Google Scholar 

  12. Hughes JD, Lawton CD, Nawabi DH, Pearle AD, Musahl V (2020) Anterior cruciate ligament repair: the current status. J Bone Joint Surg Am 102:1900–1915

    Article  PubMed  Google Scholar 

  13. Iriuchishima T, Shirakura K, Horaguchi T, Morimoto Y, Fu FH (2011) Full knee extension magnetic resonance imaging for the evaluation of intercondylar roof impingement after anatomical double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19(Suppl 1):S22-28

    Article  PubMed  Google Scholar 

  14. Iriuchishima T, Shirakura K, Yorifuji H, Aizawa S, Murakami T, Fu FH (2013) ACL footprint size is correlated with the height and area of the lateral wall of femoral intercondylar notch. Knee Surg Sports Traumatol Arthrosc 21:789–796

    Article  PubMed  Google Scholar 

  15. Iriuchishima T, Yorifuji H, Aizawa S, Tajika Y, Murakami T, Fu FH (2014) Evaluation of ACL mid-substance cross-sectional area for reconstructed autograft selection. Knee Surg Sports Traumatol Arthrosc 22:207–213

    Article  PubMed  Google Scholar 

  16. Kropf EJ, Shen W, van Eck CF, Musahl V, Irrgang JJ, Fu FH (2013) ACL-PCL and intercondylar notch impingement: magnetic resonance imaging of native and double-bundle ACL-reconstructed knees. Knee Surg Sports Traumatol Arthrosc 21:720–725

    Article  PubMed  Google Scholar 

  17. Letter MI, Parrino RL, Adams W, Ripic Z, Baraga MG, Kaplan LD et al (2023) The associations between quadriceps tendon graft thickness and isokinetic performance. Am J Sports Med 51:942–948

    Article  PubMed  Google Scholar 

  18. Lind M, Nielsen TG, Soerensen OG, Mygind-Klavsen B, Faunø P (2020) Quadriceps tendon grafts does not cause patients to have inferior subjective outcome after anterior cruciate ligament (ACL) reconstruction than do hamstring grafts: a 2-year prospective randomised controlled trial. Br J Sports Med 54:183–187

    Article  PubMed  Google Scholar 

  19. Lippe J, Armstrong A, Fulkerson JP (2012) Anatomic guidelines for harvesting a quadriceps free tendon autograft for anterior cruciate ligament reconstruction. Arthroscopy 28:980–984

    Article  PubMed  Google Scholar 

  20. Magnussen RA, Lawrence JT, West RL, Toth AP, Taylor DC, Garrett WE (2012) Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 28:526–531

    Article  PubMed  Google Scholar 

  21. Mariscalco MW, Flanigan DC, Mitchell J, Pedroza AD, Jones MH, Andrish JT et al (2013) The influence of hamstring autograft size on patient-reported outcomes and risk of revision after anterior cruciate ligament reconstruction: a multicenter orthopaedic outcomes network (MOON) cohort study. Arthroscopy 29:1948–1953

    Article  PubMed  Google Scholar 

  22. Mouarbes D, Dagneaux L, Olivier M, Lavoue V, Peque E, Berard E et al (2020) Lower donor-site morbidity using QT autografts for ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 28:2558–2566

    Article  PubMed  Google Scholar 

  23. Mouarbes D, Menetrey J, Marot V, Courtot L, Berard E, Cavaignac E (2019) Anterior cruciate ligament reconstruction: a systematic review and meta-analysis of outcomes for quadriceps tendon autograft versus bone-patellar tendon-bone and hamstring-tendon autografts. Am J Sports Med 47:3531–3540

    Article  PubMed  Google Scholar 

  24. Mukaka MM (2012) Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J 24:69–71

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Offerhaus C, Albers M, Nagai K, Arner JW, Höher J, Musahl V et al (2018) Individualized anterior cruciate ligament graft matching: In vivo comparison of cross-sectional areas of hamstring, patellar, and quadriceps tendon grafts and ACL insertion area. Am J Sports Med 46:2646–2652

    Article  PubMed  Google Scholar 

  26. Potage D, Duparc F, D’Utruy A, Courage O, Roussignol X (2015) Mapping the quadriceps tendon: an anatomic and morphometric study to guide tendon harvesting. Surg Radiol Anat 37:1063–1067

    Article  PubMed  Google Scholar 

  27. Runer A, Csapo R, Hepperger C, Herbort M, Hoser C, Fink C (2020) Anterior cruciate ligament reconstructions with quadriceps tendon autograft result in lower graft rupture rates but similar patient-reported outcomes as compared with hamstring tendon autograft: a comparison of 875 patients. Am J Sports Med 48:2195–2204

    Article  PubMed  Google Scholar 

  28. Runer A, Wierer G, Herbst E, Hepperger C, Herbort M, Gföller P et al (2018) There is no difference between quadriceps- and hamstring tendon autografts in primary anterior cruciate ligament reconstruction: a 2-year patient-reported outcome study. Knee Surg Sports Traumatol Arthrosc 26:605–614

    Article  PubMed  Google Scholar 

  29. Sheean AJ, Musahl V, Slone HS, Xerogeanes JW, Milinkovic D, Fink C et al (2018) Quadriceps tendon autograft for arthroscopic knee ligament reconstruction: use it now, use it often. Br J Sports Med 52:698–701

    Article  PubMed  Google Scholar 

  30. Slone HS, Romine SE, Premkumar A, Xerogeanes JW (2015) Quadriceps tendon autograft for anterior cruciate ligament reconstruction: a comprehensive review of current literature and systematic review of clinical results. Arthroscopy 31:541–554

    Article  PubMed  Google Scholar 

  31. Snaebjörnsson T, Hamrin Senorski E, Ayeni OR, Alentorn-Geli E, Krupic F, Norberg F et al (2017) Graft diameter as a predictor for revision anterior cruciate ligament reconstruction and KOOS and EQ-5D values: a cohort study from the Swedish national knee ligament register based on 2240 patients. Am J Sports Med 45:2092–2097

    Article  PubMed  Google Scholar 

  32. Stäubli HU, Schatzmann L, Brunner P, Rincón L, Nolte LP (1996) Quadriceps tendon and patellar ligament: cryosectional anatomy and structural properties in young adults. Knee Surg Sports Traumatol Arthrosc 4:100–110

    Article  PubMed  Google Scholar 

  33. Takenaga T, Yoshida M, Albers M, Nagai K, Nakamura T, Fu FH et al (2019) Preoperative sonographic measurement can accurately predict quadrupled hamstring tendon graft diameter for ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 27:797–804

    Article  PubMed  Google Scholar 

  34. Takeuchi S, Byrne KJ, Kanto R, Onishi K, Fu FH (2022) Morphological evaluation of the quadriceps tendon using preoperative ultrasound in anterior cruciate ligament reconstruction. Am J Sports Med 50:111–117

    Article  PubMed  Google Scholar 

  35. Takeuchi S, Rothrauff BB, Taguchi M, Onishi K, Fu FH (2022) Preoperative ultrasound predicts the intraoperative diameter of the quadriceps tendon autograft more accurately than preoperative magnetic resonance imaging for anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 30:52–60

    Article  PubMed  Google Scholar 

  36. Tan TK, Subramaniam AG, Ebert JR, Radic R (2022) Quadriceps tendon versus hamstring tendon autografts for anterior cruciate ligament reconstruction: a systematic review and Mmeta-analysis. Am J Sports Med 50:3974–3986

    Article  PubMed  Google Scholar 

  37. Xerogeanes JW, Mitchell PM, Karasev PA, Kolesov IA, Romine SE (2013) Anatomic and morphological evaluation of the quadriceps tendon using 3-dimensional magnetic resonance imaging reconstruction: applications for anterior cruciate ligament autograft choice and procurement. Am J Sports Med 41:2392–2399

    Article  PubMed  Google Scholar 

Download references

Funding

No specific funding was obtained for this work.

Author information

Authors and Affiliations

Authors

Contributions

JI is the first author. ST, KT, and SD involved in substantial contributions to the data acquisition for the work. KO and BPL involved in revising the work for important intellectual content. VM involved in final approval of the version to be published.

Corresponding author

Correspondence to Kentaro Onishi.

Ethics declarations

Conflict of interest

There is no conflict of interest.

IRB approval

This study was approved by the Institutional Review Board (IRB), i.e., the Ethics Committee of University of Pittsburgh, in Pittsburgh, USA (reference ID no. STUDY19100047).

Informed consent

Obtained using a written document from all patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, J., Takeuchi, S., Dadoo, S. et al. Harvest location has a minimal impact on differences in cross-sectional area of quadriceps tendon in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 31, 4791–4797 (2023). https://doi.org/10.1007/s00167-023-07513-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-023-07513-w

Keywords

Navigation