Skip to main content

Advertisement

Log in

Magnetic resonance imaging is able to detect patellofemoral focal cartilage injuries: a systematic review with meta-analysis

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to analyze the diagnostic accuracy of magnetic resonance imaging (MRI) to detect and grade the severity of patellofemoral (PF) cartilage injuries.

Methods

A systematic review was conducted on PubMed, EMBASE and Cochrane Library databases (up to July 1st 2022) to search for studies that reported the diagnostic accuracy of MRI to detect and grade PF cartilage injuries as compared to diagnostic arthroscopy. Risk of bias was judged using the QUADAS-2 tool. Quantitative syntheses were performed to calculate the diagnostic accuracy metric—sensitivity, specificity, positive likelihood (LR+) and negative likelihood (LR−) ratios, diagnostic odds ratio (DOR)—and presented as median with 25% and 75% percentiles. The summary receiver operating characteristic (SROC) curves were also calculated. Diagnostic accuracy metrics were calculated for all PF cartilage injuries and then sub-grouped by patellar and trochlear lesions. Diagnostic accuracy was also calculated according to the grading of cartilage injuries.

Results

Forty-five studies were included for qualitative analyses and forty studies were included for quantitative synthesis. A total of 3534 participants with a weighted mean age of 38.1 years were included. Diagnostic accuracy was generally high: sensitivity (0.8, 0.6–1.0), specificity (0.9, 0.8–1.0), LR+ (6.4, 3.1–15.3), LR− (0.3, 0.2–0.4) and DOR (21.3, 9.9–121.1). The area under the curve (AUC) of the SROC was 0.9. The diagnostic accuracy was slightly higher for patellar (sensitivity 0.8, specificity 0.8, LR+ 5.3, LR− 0.2, DOR 28.8) than for trochlear lesions (sensitivity 0.7, specificity 0.9, LR+ 5.5, LR− 0.4, DOR 14.3). The sensitivity was generally higher when grading advanced (vs. early or intermediate) cartilage injuries of the patella.

Conclusion

The MRI is able to diagnose PF cartilage injuries with reasonably high diagnostic accuracy (as compared to arthroscopy). Clinicians can rely on MRI to reliably diagnose PF cartilage injuries (with some limitations) which will play an important role in deciding for surgical or non-operative treatment.

Level of evidence

Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adhikari K, Kumar Gupta M, Devkota K, Baral P, Koirala S (2021) Magnetic resonance imaging evaluation of patellofemoral joint. J Nepal Health Res Counc 19:122–126

    Article  PubMed  Google Scholar 

  2. Ahmad Z, Murakami AM, Engebretsen L, Jarraya M, Roemer FW, Guermazi A et al (2020) Knee cartilage damage and concomitant internal derangement on MRI in athletes competing at the Rio de Janeiro 2016 Summer Olympics. Eur J Radiol Open 7:100258

    Article  PubMed  PubMed Central  Google Scholar 

  3. Andrade R, Nunes J, Hinckel BB, Gruskay J, Vasta S, Bastos R et al (2021) Cartilage restoration of patellofemoral lesions: a systematic review. Cartilage 13:57S-73S

    Article  PubMed  Google Scholar 

  4. Andrade R, Vasta S, Papalia R, Pereira H, Oliveira JM, Reis RL et al (2016) Prevalence of articular cartilage lesions and surgical clinical outcomes in football (Soccer) players’ knees: a systematic review. Arthroscopy 32:1466–1477

    Article  PubMed  Google Scholar 

  5. Åroøen A, Løken S, Heir S, Alvik E, Ekeland A, Granlund OG et al (2004) Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 32:211–215

    Article  Google Scholar 

  6. Baker H, Dickherber J, Reddy M, Rizzi A, Kahn A, Athiviraham A (2021) Diagnostic value of MRI and radiographs of the knee to identify osteochondral lesions in acute patellar instability. J Knee Surg. https://doi.org/10.1055/s-0041-1729551

    Article  PubMed  Google Scholar 

  7. Brown TR, Quinn SF (1993) Evaluation of chondromalacia of the patellofemoral compartment with axial magnetic resonance imaging. Skeletal Radiol 22:325–328

    Article  CAS  PubMed  Google Scholar 

  8. Chia L, Silva DDO, Whalan M, McKay MJ, Sullivan J, Fuller CW et al (2022) Epidemiology of gradual-onset knee injuries in team ball-sports: a systematic review with meta-analysis of prevalence, incidence, and burden by sex, sport, age, and participation level. J Sci Med Sport 25:S1440-2440

    Article  PubMed  Google Scholar 

  9. Chien A, Weaver JS, Kinne E, Omar I (2020) Magnetic resonance imaging of the knee. Polish J Radiol 85:e509–e531

    Article  Google Scholar 

  10. Danieli MV, Guerreiro JPF, Queiroz A de O, Pereira H da R, Tagima S, Marini MG, et al. (2016) Diagnosis and classification of chondral knee injuries: comparison between magnetic resonance imaging and arthroscopy. Knee Surg Sports Traumatol Arthrosc 24:1627–1633

  11. Disler DG, McCauley TR, Kelman CG, Fuchs MD, Ratner LM, Wirth CR et al (1996) Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR Am J Roentgenol 167:127–132

    Article  CAS  PubMed  Google Scholar 

  12. Duc SR, Koch P, Schmid MR, Horger W, Hodler J, Pfirrmann CWA (2007) Diagnosis of articular cartilage abnormalities of the knee: prospective clinical evaluation of a 3D water-excitation true FISP sequence. Radiology 243:475–482

    Article  PubMed  Google Scholar 

  13. van Eck CF, Kingston RS, Crues JV, Kharrazi FD (2017) Magnetic resonance imaging for patellofemoral chondromalacia: is there a role for T2 mapping? Orthop J Sports Med 5:2325967117740554

    PubMed  PubMed Central  Google Scholar 

  14. von Engelhardt LV, Raddatz M, Bouillon B, Spahn G, Dvid A, Haage P et al (2010) How reliable is MRI in diagnosing cartilaginous lesions in patients with first and recurrent lateral patellar dislocations? BMC Musculoskelet Disord 11:149

    Article  Google Scholar 

  15. von Engelhardt LV, Kraft CN, Pennekamp PH, Schild HH, Schmitz A, von Falkenhausen M (2007) The evaluation of articular cartilage lesions of the knee with a 3-tesla magnet. Arthroscopy 23:496–502

    Article  Google Scholar 

  16. Figueroa D, Calvo R, Vaisman A, Carrasco MA, Moraga C, Delgado I (2007) Knee chondral lesions: incidence and correlation between arthroscopic and magnetic resonance findings. Arthroscopy 23:312–315

    Article  PubMed  Google Scholar 

  17. Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH (2010) Prevalence of chondral defects in athletes’ knees: a systematic review. Med Sci Sports Exerc 42:1795–1801

    Article  PubMed  Google Scholar 

  18. Friemert B, Oberländer Y, Schwarz W, Häberle HJ, Bähren W, Gerngroß H et al (2004) Diagnosis of chondral lesions of the knee joint: can MRI replace arthroscopy?: a prospective study. Knee Surg Sports Traumatol Arthrosc 12:58–64

    Article  CAS  PubMed  Google Scholar 

  19. Gagliardi JA, Chung EM, Chandnani VP, Kesling KL, Christensen KP, Null RN et al (1994) Detection and staging of chondromalacia patellae: relative efficacies of conventional MR imaging, MR arthrography, and CT arthrography. AJR Am J Roentgenol 163:629–636

    Article  CAS  PubMed  Google Scholar 

  20. Galea A, Giuffre B, Dimmick S, Coolican MRJ, Parker DA (2009) The accuracy of magnetic resonance imaging scanning and its influence on management decisions in knee surgery. Arthroscopy 25:473–480

    Article  PubMed  Google Scholar 

  21. Gückel C, Jundt G, Schnabel K, Gächter A (1995) Spin-echo and 3D gradient-echo imaging of the knee joint: a clinical and histopathological comparison. Eur J Radiol 21:25–33

    Article  PubMed  Google Scholar 

  22. Hadley CJ, Rao S, Ajami G, Ludwick L, Liu JX, Tjoumakaris FP et al (2021) Articular cartilage damage worsens from first-time to recurrent patellar dislocation—a longitudinal magnetic resonance imaging study. Arthrosc Sports Med Rehabil 4:e343–e347

    Article  PubMed  PubMed Central  Google Scholar 

  23. Harman M, Ipeksoy U, Dogan A, Arslan H, Etlik O (2003) MR arthrography in chondromalacia patellae diagnosis on a low-field open magnet system. Clin Imaging 27:194–199

    Article  PubMed  Google Scholar 

  24. Harris JD, Brand JC, Cote MP, Dhawan A (2017) Research pearls: the significance of statistics and perils of pooling. Part 3: pearls and pitfalls of meta-analyses and systematic reviews. Arthroscopy 33:1594–1602

    Article  PubMed  Google Scholar 

  25. Harris JD, Brophy RH, Jia G, Price B, Knopp M, Siston RA et al (2012) Sensitivity of magnetic resonance imaging for detection of patellofemoral articular cartilage defects. Arthroscopy 28:1728–1737

    Article  PubMed  Google Scholar 

  26. Harris M, Edwards S, Rio E, Cook J, Cencini S, Hannington MC et al (2021) Nearly 40% of adolescent athletes report anterior knee pain regardless of maturation status, age, sex or sport played. Phys Ther Sport 51:29–35

    Article  PubMed  Google Scholar 

  27. Hinckel BB, Pratte EL, Baumann CA, Gowd AK, Farr J, Liu JN et al (2020) Patellofemoral cartilage restoration: a systematic review and meta-analysis of clinical outcomes. Am J Sports Med 48:1756–1772

    Article  PubMed  Google Scholar 

  28. Horga LM, Hirschmann AC, Henckel J, Fotiadou A, Di Laura A, Torlasco C et al (2020) Prevalence of abnormal findings in 230 knees of asymptomatic adults using 3.0 T MRI. Skeletal Radiol 49:1099–1107

    Article  PubMed  PubMed Central  Google Scholar 

  29. Huegli RW, Moelleken SMC, Stork A, Bonel HM, Bredella MA, Meckel S et al (2005) MR imaging of post-traumatic articular cartilage injuries confined to the femoral trochlea: arthroscopic correlation and clinical significance. Eur J Radiol 53:90–95

    PubMed  Google Scholar 

  30. Jandaghi AB, Mardani-Kivi M, Mirbolook A, Emami-Meybodi MK, Mohammadzadeh S, Farahmand M (2016) Comparison of indirect MR arthrography with conventional MRI in the diagnosis of knee pathologies in patients with knee pain. Trauma Mon 21:e20718

    Google Scholar 

  31. Jarraya M, Roemer FW, Engebretsen L, Kompel AJ, Small KM, Smith SE et al (2021) Association of markers of patellofemoral maltracking to cartilage damage and bone marrow lesions on MRI: data from the 2016 Olympic Games of Rio De Janeiro. Eur J Radiol Open 8:100381

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kakouris N, Yener N, Fong DTP (2021) A systematic review of running-related musculoskeletal injuries in runners. J Sport Health Sci 10:513–522

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kaplan DJ, Mojica ES, Ortega PF, Triana J, Strauss EJ, Jazrawi LM et al (2022) Posterior tibial tubercle measured by the sagittal TT-TG distance correlates with increased risk for patellofemoral chondral lesions. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-022-06988-3

    Article  PubMed  Google Scholar 

  34. Khoo P, Ghoshal A, Byrne D, Subramaniam R, Moran R (2019) A novel clinical test for assessing patellar cartilage changes and its correlation with magnetic resonance imaging and arthroscopy. Physiother Theory Pract 35:781–786

    Article  PubMed  Google Scholar 

  35. Kijowski R, Blankenbaker DG, Munoz del Rio A, Baer GS, Graf BK (2013) Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 267:503–513

    Article  PubMed  Google Scholar 

  36. Kohl S, Meier S, Ahmad SS, Bonel H, Exadaktylos AK, Krismer A et al (2015) Accuracy of cartilage-specific 3-Tesla 3D-DESS magnetic resonance imaging in the diagnosis of chondral lesions: comparison with knee arthroscopy. J Orthop Surg Res 10:191

    Article  PubMed  PubMed Central  Google Scholar 

  37. Krieger EAG, Karam FC, Soder RB, da Silva JLB (2020) Prevalence of patellar chondropathy on 3.0 T magnetic resonance imaging. Radiol Bras 53:375

    Article  PubMed  PubMed Central  Google Scholar 

  38. LaPrade RF, Cram TR, Mitchell JJ, Geeslin AG, Lockard CA, Fitzcharles EK et al (2018) Axial-oblique versus standard axial 3-T magnetic resonance imaging for the detection of trochlear cartilage lesions: a prospective study. Orthop J Sports Med 6:2325967118801009

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lee SH, Suh JS, Cho J, Kim SJ, Kim SJ (2001) Evaluation of chondromalacia of the patella with axial inversion recovery-fast spin-echo imaging. J Magn Reson Imaging 13:412–416

    Article  CAS  PubMed  Google Scholar 

  40. Leigheb M, Guzzardi G, Barini M, Abruzzese M, Riva S, Paschè A et al (2019) Role of low field MRI in detecting knee lesions. Acta Biomed 90:116–122

    Google Scholar 

  41. Li X, Yu C, Wu H, Daniel K, Hu D, Xia L, Pan C et al (2009) Prospective comparison of 3D FIESTA versus fat-suppressed 3D SPGR MRI in evaluating knee cartilage lesions. Clin Radiol 64:1000–1008

    Article  CAS  PubMed  Google Scholar 

  42. Mandell JC, Rhodes JA, Shah N, Gaviola GC, Gomoll AH, Smith SE (2017) Routine clinical knee MR reports: comparison of diagnostic performance at 1.5 T and 3.0 T for assessment of the articular cartilage. Skeletal Radiol 46:1487–1498

    Article  PubMed  Google Scholar 

  43. Mattila VM, Weckström M, Leppänen V, Kiuru M, Pihlajamäki H (2012) Sensitivity of MRI for articular cartilage lesions of the patellae. Scand J Surg 101:56–61

    Article  CAS  PubMed  Google Scholar 

  44. McCauley TR, Kier R, Lynch KJ, Jokl P (1992) Chondromalacia patellae: diagnosis with MR imaging. AJR Am J Roentgenol 158:101–105

    Article  CAS  PubMed  Google Scholar 

  45. McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM, Clifford T et al (2018) Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies the PRISMA-DTA statement. JAMA 319:388–396

    Article  PubMed  Google Scholar 

  46. Milewski MD, Smitaman E, Moukaddam H, Katz LD, Essig DA, Medvecky MJ et al (2012) Comparison of 3D vs. 2D fast spin echo imaging for evaluation of articular cartilage in the knee on a 3T system scientific research. Eur J Radiol 81:1637–1643

    Article  PubMed  Google Scholar 

  47. Mohr A (2003) The value of water-excitation 3D FLASH and fat-saturated PDw TSE MR imaging for detecting and grading articular cartilage lesions of the knee. Skeletal Radiol 32:396–402

    Article  PubMed  Google Scholar 

  48. Murphy BJ (2001) Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging. Skeletal Radiol 30:305–311

    Article  CAS  PubMed  Google Scholar 

  49. Nakanishi K, Inoue M, Harada K, Ikezoe J, Murakami T, Nakamura H et al (1992) Subluxation of the patella: evaluation of patellar articular cartilage with MR imaging. Br J Radiol 65:662–667

    Article  CAS  PubMed  Google Scholar 

  50. Ochi M, Sumen Y, Kanda T, Ikuta Y, Itoh K (1994) The diagnostic value and limitation of magnetic resonance imaging on chondral lesions in the knee joint. Arthroscopy 10:176–183

    Article  CAS  PubMed  Google Scholar 

  51. Palmowski Y, Jung T, Doering AK, Gwinner C, Schatka I, Bartek B (2021) Analysis of cartilage injury patterns and risk factors for knee joint damage in patients with primary lateral patella dislocations. PLoS ONE 16:e0258240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pihlajamäki HK, Kuikka PI, Leppänen VV, Kiuru MJ, Mattila VM (2010) Reliability of clinical findings and magnetic resonance imaging for the diagnosis of chondromalacia patellae. J Bone Joint Surg Am 92:927–934

    Article  PubMed  Google Scholar 

  53. Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB (1998) Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 80:1276–1284

    Article  CAS  PubMed  Google Scholar 

  54. Recht MP, Piraino DW, Paletta GA, Schils JP, Belhobek GH (1996) Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 198:209–212

    Article  CAS  PubMed  Google Scholar 

  55. Reiser MF, Bongartz G, Erlemann R, Strobel M, Pauly T, Gaebert K et al (1988) Magnetic resonance in cartilaginous lesions of the knee joint with three-dimensional gradient-echo imaging. Skeletal Radiol 17:465–471

    Article  CAS  PubMed  Google Scholar 

  56. Rose PM, Demlow TA, Szumowski J, Quinn SF (1994) Chondromalacia patellae: fat-suppressed MR imaging. Radiology 193:437–440

    Article  CAS  PubMed  Google Scholar 

  57. Ruehm S, Zanetti M, Romero J, Hodler J (1998) MRI of patellar articular cartilage: evaluation of an optimized gradient-echo sequence (3D-DESS). J Magn Reson Imaging 8:1246–1251

    Article  CAS  PubMed  Google Scholar 

  58. Russell GGQ, Johnson M, Johnston DWC, Arnett G, Swersky J (1994) Imaging studies in surgically proven chondromalacia patellae. Clin J Sport Med 4:11–13

    Article  Google Scholar 

  59. Saragaglia D, Banihachemi JJ, Refaie R (2020) Acute instability of the patella: is magnetic resonance imaging mandatory? Int Orthop 44:2299–2303

    Article  PubMed  Google Scholar 

  60. Schmid MR, Pfirrmann CWA, Koch P, Zanetti M, Kuehn B, Hodler J (2005) Imaging of patellar cartilage with a 2D multiple-echo data image combination sequence. AJR Am J Roentgenol 184:1744–1748

    Article  PubMed  Google Scholar 

  61. Schnaiter JW, Roemer F, McKenna-Kuettner A, Patzak H-J, May MS, Janka R et al (2018) Diagnostic accuracy of an MRI protocol of the knee accelerated through parallel imaging in correlation to arthroscopy. Rofo 190:265–272

    Article  PubMed  Google Scholar 

  62. De Smet AA, Monu JUV, Fisher DR, Keene JS, Graf BK (1992) Signs of patellar chondromalacia on sagittal T2-weighted magnetic resonance imaging. Skeletal Radiol 21:103–105

    Article  PubMed  Google Scholar 

  63. Sonin AH, Pensy RA, Mulligan ME, Hatem S (2002) Grading articular cartilage of the knee using fast spin-echo proton density-weighted MR imaging without fat suppression. AJR Am J Roentgenol 179:1159–1166

    Article  PubMed  Google Scholar 

  64. Tawfik AI, Kamr WH, Taman SE (2019) Comparison of 2D fat suppressed proton density (FS-PD) and 3D (WATS-c) MRI pulse sequences in evaluation of chondromalacia patellae. Egypt J Radiol Nucl Med 50:1–6

    Article  Google Scholar 

  65. Vallotton JA, Meuli RA, Leyvraz PF, Landry M (1995) Comparison between magnetic resonance imaging and arthroscopy in the diagnosis of patellar cartilage lesions—a prospective study. Knee Surg Sports Traumatol Arthrosc 3:157–162

    Article  CAS  PubMed  Google Scholar 

  66. Wang SF, Cheng HC, Chang CY (1999) Fat-suppressed three-dimensional fast spoiled gradient-recalled echo imaging: a modified FS 3D SPGR technique for assessment of patellofemoral joint chondromalaci. Clin Imaging 23:177–180

    Article  CAS  PubMed  Google Scholar 

  67. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB et al (2011) Quadas-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536

    Article  PubMed  Google Scholar 

  68. Yulish BS, Montanez J, Goodfellow DB, Bryan PJ, Mulopulos GP, Modic MT (1987) Chondromalacia patellae: assessment with MR imaging. Radiology 164:763–766

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved both in the idealization of the systematic review and preparation of the manuscript. FXL and RA were involved in the databases searches and data extraction. FXL and AV performed the data collection and organization in coordination with RA and CV. CV and RA performed all data analysis and interpretation of results. FXL and AV judged the risk of bias of the studies included in the systematic review. JEM guided and provided advice during all steps of the development of the systematic review. All authors contributed to drafting and approving the final manuscript prior to submission to the peer-reviewed journal.

Corresponding author

Correspondence to João Espregueira-Mendes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Non-applicable for this type of study.

Informed consent

Non-applicable for this type of study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 810 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xará-Leite, F., Vinha, A., Valente, C. et al. Magnetic resonance imaging is able to detect patellofemoral focal cartilage injuries: a systematic review with meta-analysis. Knee Surg Sports Traumatol Arthrosc 31, 2469–2481 (2023). https://doi.org/10.1007/s00167-022-07203-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-022-07203-z

Keywords

Navigation