Skip to main content

Advertisement

Log in

Tibial tunnel expansion does not correlate with four-strand graft maturation after ACL reconstruction using adjustable cortical suspensory fixation

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Anterior cruciate ligament reconstruction (ACLR) using a short, quadrupled semitendinosus (ST-4) autograft, fixed  with an adjustable suspensory fixation (ASF), has several potential advantages. However, the construct is suspected to generate micromotion, tunnel widening and poor graft maturation. The aim of this study was to evaluate post-operative tibial tunnel expansion, graft maturation and clinical outcomes for this type of ACLR.

Methods

One-hundred and forty-nine patients were reviewed at a minimum of 2 years following 4-ST ACLR, mean 25.6 ± 3.5 months [24–55], with clinical follow-up and MRI scans. Graft maturity of the intra-articular part of the graft and the tibial tunnel portion was assessed using Signal-to-Noise Quotient (SNQ) and Howell score. Tibial tunnel expansion, bone–graft contact and graft volume in the tibial tunnel were calculated from the MRI scans.

Results

Mean tibial tunnel expansion was 13 ± 16.5% [12–122]. Mean SNQ for graft within the tibial tunnel was 3.8 ± 7.1 [ – 7.7 to 39] and 2.0 ± 3.5 [ – 14 to 17] for the intra-articular portion of the graft. The Howell score for graft within the tibial tunnel was 41% Grade I, 37% Grade 2, 20% Grade 3, 2% grade 4, and for the intra-articular part 61% Grade 1, 26% Grade 2, 13% Grade 3 and 1% Grade 4. The mean tibial tunnel bone–graft contact was 81 ± 23% [0–100] and mean graft volume was 80 ± 22% [0–100]. No correlation was found between tibial tunnel expansion and graft maturity assessed at both locations. Graft maturity was correlated with higher graft-bone contact and graft volume in the tibial tunnel (p < 0.05).

Conclusions

ST-4 ACLR with ASF had low levels of tunnel enlargement at 2 years. No correlation was found between graft maturation and tibial tunnel expansion. Graft maturity was correlated with graft–bone contact and graft volume in the tibial tunnel.

Level of evidence

Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACL:

Anterior cruciate ligament

ASF:

Adjustable suspensory fixation

BPTB:

Bone patellar tendon bone graft

CT scan:

Computerized tomography scan

IKDC:

International knee documentation committee

Lat:

Lateral

MRI:

Magnetic resonance imaging

PA:

Posterior–anterior

SNQ:

Signal to noise quotient

ST4:

Quadrupled semitendinosus graft

STG:

Semitendinosus and gracilis graft

XR:

X-ray

References

  1. Anderson K, Seneviratne AM, Izawa K, Atkinson BL, Potter HG, Rodeo SA (2001) Augmentation of tendon healing in an intraarticular bone tunnel with use of a bone growth factor. Am J Sports Med 29:689–698

    Article  CAS  PubMed  Google Scholar 

  2. Bouguennec N, Robinson J, Douiri A, Graveleau N, Colombet PD (2021) Two-year postoperative MRI appearances of anterior cruciate ligament hamstrings autografts are not correlated with functional outcomes, anterior laxity, or patient age. Bone Joint Open 2:569–575

    Article  PubMed  PubMed Central  Google Scholar 

  3. Browning WM, Kluczynski MA, Curatolo C, Marzo JM (2017) Suspensory versus aperture fixation of a quadrupled hamstring tendon autograft in anterior cruciate ligament reconstruction: a meta-analysis. Am J Sports Med 45:2418–2427

    Article  PubMed  Google Scholar 

  4. Buelow J-U, Siebold R, Ellermann A (2002) A prospective evaluation of tunnel enlargement in anterior cruciate ligament reconstruction with hamstrings: extracortical versus anatomical fixation. Knee Surg Sports Traumatol Arthrosc 10:80–85

    Article  PubMed  Google Scholar 

  5. Cavaignac E, Marot V, Faruch M, Reina N, Murgier J, Accadbled F, Berard E, Chiron P (2018) Hamstring graft incorporation according to the length of the graft inside tunnels. Am J Sports Med 46:348–356

    Article  PubMed  Google Scholar 

  6. Chu CR, Williams AA (2019) Quantitative MRI UTE-T2* and T2* show progressive and continued graft maturation over 2 years in human patients after anterior cruciate ligament reconstruction. Orthop J Sports Med 7:232596711986305

    Article  Google Scholar 

  7. Clatworthy MG, Annear P, Bulow J-U, Bartlett RJ (1999) Tunnel widening in anterior cruciate ligament reconstruction: a prospective evaluation of hamstring and patella tendon grafts. Knee Surg Sports Traumatol Arthrosc 7:138–145

    Article  CAS  PubMed  Google Scholar 

  8. Colombet P, Graveleau N (2015) An anterior cruciate ligament reconstruction technique with 4-strand semitendinosus grafts, using outside-in tibial tunnel drilling and suspensory fixation devices. Arthrosc Tech 4:e507–e511

    Article  PubMed  PubMed Central  Google Scholar 

  9. Colombet P, Graveleau N, Jambou S (2016) Incorporation of hamstring grafts within the tibial tunnel after anterior cruciate ligament reconstruction: magnetic resonance imaging of suspensory fixation versus interference screws. Am J Sports Med 44:2838–2845

    Article  PubMed  Google Scholar 

  10. Colombet P, Saffarini M, Bouguennec N (2018) Clinical and functional outcomes of anterior cruciate ligament reconstruction at a minimum of 2 years using adjustable suspensory fixation in both the femur and tibia: a prospective study. Orthop J Sports Med 6:232596711880412

    Article  Google Scholar 

  11. Colombet P, Silvestre A, Bouguennec N (2018) The capsular line reference, a new arthroscopic reference for posterior/anterior femoral tunnel positioning in anterior cruciate ligament reconstruction. J Exp Orthop 5:9. https://doi.org/10.1186/s40634-018-0125-9

    Article  PubMed  PubMed Central  Google Scholar 

  12. Devitt BM, Maes M, Feller JA, Webster KE (2020) No long-term tunnel enlargement following anterior cruciate ligament reconstruction using autograft hamstring tendon with dual suspensory fixation. Knee Surg Sports Traumatol Arthrosc 28:2157–2162

    Article  CAS  PubMed  Google Scholar 

  13. Eguchi A, Ochi M, Adachi N, Deie M, Nakamae A, Usman MA (2014) Mechanical properties of suspensory fixation devices for anterior cruciate ligament reconstruction: Comparison of the fixed-length loop device versus the adjustable-length loop device. Knee 21:743–748

    Article  PubMed  Google Scholar 

  14. Fauno P, Kaalund S (2005) Tunnel widening after hamstring anterior cruciate ligament reconstruction is influenced by the type of graft fixation used: a prospective randomized study. Arthroscopy 21:1337–1341

    Article  PubMed  Google Scholar 

  15. Figueroa F, Figueroa D, Calvo R, Vaisman A, Espregueira-Mendes J (2020) Graft choice in combined anterior cruciate ligament and medial collateral ligament reconstruction. EFORT Open Rev 5:221–225

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fules PJ, Madhav RT, Goddard RK, Newman-Sanders A, Mowbray MAS (2003) Evaluation of tibial bone tunnel enlargement using MRI scan cross-sectional area measurement after autologous hamstring tendon ACL replacement. Knee 10:87–91

    Article  PubMed  Google Scholar 

  17. Ge Y, Li H, Tao H, Hua Y, Chen J, Chen S (2015) Comparison of tendon–bone healing between autografts and allografts after anterior cruciate ligament reconstruction using magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 23:954–960

    Article  PubMed  Google Scholar 

  18. Grassi A, Bailey JR, Signorelli C, Carbone G, Wakam AT, Lucidi GA, Zaffagnini S (2016) Magnetic resonance imaging after anterior cruciate ligament reconstruction: A practical guide. World J Orthop 7:638

    Article  PubMed  PubMed Central  Google Scholar 

  19. Grassi A, Carulli C, Innocenti M, Mosca M, Zaffagnini S, Bait C, Arthroscopy Committee SIGASCOT (2018) New trends in anterior cruciate ligament reconstruction: a systematic review of national surveys of the last 5 years. Joints 06:177–187

    Article  Google Scholar 

  20. Greis PE, Burks RT, Bachus K, Luker MG (2001) The influence of tendon length and fit on the strength of a tendon-bone tunnel complex. A biomechanical and histologic study in the dog. Am J Sports Med 29:493–497

    Article  CAS  PubMed  Google Scholar 

  21. van Groningen B, van der Steen MC, Janssen DM, van Rhijn LW, van der Linden AN, Janssen RPA (2020) Assessment of graft maturity after anterior cruciate ligament reconstruction using autografts: a systematic review of biopsy and magnetic resonance imaging studies. Arthrosc Sports Med Rehabil 2:e377–e388

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hofbauer M, Soldati F, Szomolanyi P, Trattnig S, Bartolucci F, Fu F, Denti M (2019) Hamstring tendon autografts do not show complete graft maturity 6 months postoperatively after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 27:130–136

    Article  PubMed  Google Scholar 

  23. Höher J, Möller HD, Fu FH (1998) Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction? Knee Surg Sports Traumatol Arthrosc 6:231–240

    Article  PubMed  Google Scholar 

  24. Howell SM, Clark JA, Blasier RD (1991) Serial magnetic resonance imaging of hamstring anterior cruciate ligament autografts during the first year of implantation: A preliminary study. Am J Sports Med 19:42–47

    Article  CAS  PubMed  Google Scholar 

  25. Iorio R, Vadalà A, Argento G, Di Sanzo V, Ferretti A (2007) Bone tunnel enlargement after ACL reconstruction using autologous hamstring tendons: a CT study. Int Orthop 31:49–55

    Article  PubMed  Google Scholar 

  26. Ishibashi Y, Toh S, Okamura Y, Sasaki T, Kusumi T (2001) Graft incorporation within the tibial bone tunnel after anterior cruciate ligament reconstruction with bone-patellar tendon-bone autograft. Am J Sports Med 29:473–479

    Article  CAS  PubMed  Google Scholar 

  27. Janssen RPA, Scheffler SU (2014) Intra-articular remodelling of hamstring tendon grafts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 22:2102–2108

    Article  PubMed  Google Scholar 

  28. Jansson KA, Harilainen A, Sandelin J, Karjalainen PT, Aronen HJ, Tallroth K (1999) Bone tunnel enlargement after anterior cruciate ligament reconstruction with the hamstring autograft and endobutton fixation technique. Knee Surg Sports Traumatol Arthrosc 7:290–295

    Article  CAS  PubMed  Google Scholar 

  29. Kouloumentas P, Kavroudakis E, Charalampidis E, Kavroudakis D, Triantafyllopoulos GK (2019) Superior knee flexor strength at 2 years with all-inside short-graft anterior cruciate ligament reconstruction vs a conventional hamstring technique. Knee Surg Sports Traumatol Arthrosc 27:3592–3598

    Article  PubMed  Google Scholar 

  30. Lamoria R, Sharma A, Goyal D, Upadhyay R (2020) Influence of three different fixation methods on femoral tunnel widening in ACL reconstructed patients evaluated using computed tomography (CT) scan. Eur J Orthop Surg Traumatol 30:411–417

    Article  PubMed  Google Scholar 

  31. Li H, Chen J, Li H, Wu Z, Chen S (2017) MRI-based ACL graft maturity does not predict clinical and functional outcomes during the first year after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 25:3171–3178

    Article  PubMed  Google Scholar 

  32. Li H, Chen S, Tao H, Li H, Chen S (2014) Correlation analysis of potential factors influencing graft maturity after anterior cruciate ligament reconstruction. Orthop J Sports Med 2:232596711455355

    Article  Google Scholar 

  33. L’Insalata JC, Klatt B, Fu FH, Harner CD (1997) Tunnel expansion following anterior cruciate ligament reconstruction: a comparison of hamstring and patellar tendon autografts. Knee Surg Sports Traumatol Arthrosc 5:234–238

    Article  PubMed  Google Scholar 

  34. Liu S, Li H, Tao H, Sun Y, Chen S, Chen J (2018) A randomized clinical trial to evaluate attached hamstring anterior cruciate ligament graft maturity with magnetic resonance imaging. Am J Sports Med 46:1143–1149

    Article  PubMed  Google Scholar 

  35. Lutz PM, Achtnich A, Schütte V, Woertler K, Imhoff AB, Willinger L (2021) Anterior cruciate ligament autograft maturation on sequential postoperative MRI is not correlated with clinical outcome and anterior knee stability. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-021-06777-4

    Article  PubMed  PubMed Central  Google Scholar 

  36. Madaíl CA, Vaz M, Amaral PM, Consciência JG, Silva AL (2018) Quadruple semitendinosus graft construct with double cortical suspensory fixation for anterior cruciate ligament reconstruction: a biomechanical study. Sci Rep 8:12835

    Article  PubMed  PubMed Central  Google Scholar 

  37. Malahias M-A, Capece FM, Ballarati C, Viganò M, Marano M, Hofbauer M, Togninalli D, de Girolamo L, Denti M (2022) Sufficient MRI graft structural integrity at 9 months after anterior cruciate ligament reconstruction with hamstring tendon autograft. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-021-06830-2

    Article  PubMed  Google Scholar 

  38. Mayr R, Smekal V, Koidl C, Coppola C, Eichinger M, Rudisch A, Kranewitter C, Attal R (2020) ACL reconstruction with adjustable-length loop cortical button fixation results in less tibial tunnel widening compared with interference screw fixation. Knee Surg Sports Traumatol Arthrosc 28:1036–1044

    Article  PubMed  Google Scholar 

  39. Mayr R, Smekal V, Koidl C, Coppola C, Fritz J, Rudisch A, Kranewitter C, Attal R (2017) Tunnel widening after ACL reconstruction with aperture screw fixation or all-inside reconstruction with suspensory cortical button fixation. Knee 24:1047–1054

    Article  PubMed  Google Scholar 

  40. Moisala A-S, Järvelä T, Paakkala A, Paakkala T, Kannus P, Järvinen M (2008) Comparison of the bioabsorbable and metal screw fixation after ACL reconstruction with a hamstring autograft in MRI and clinical outcome: a prospective randomized study. Knee Surg Sports Traumatol Arthrosc 16:1080–1086

    Article  PubMed  Google Scholar 

  41. Muramatsu K, Hachiya Y, Izawa H (2008) Serial evaluation of human anterior cruciate ligament grafts by contrast-enhanced magnetic resonance imaging: comparison of allografts and autografts. Arthroscopy 24:1038–1044

    Article  PubMed  Google Scholar 

  42. Nakase J, Kitaoka K, Toratani T, Kosaka M, Ohashi Y, Tsuchiya H (2014) Grafted tendon healing in femoral and tibial tunnels after anterior cruciate ligament reconstruction. J Orthop Surg (Hong Kong) 22:65–69

    Article  PubMed  Google Scholar 

  43. Robinson J, Huber C, Jaraj P, Colombet P, Allard M, Meyer P (2006) Reduced bone tunnel enlargement post hamstring ACL reconstruction with poly-l-lactic acid/hydroxyapatite bioabsorbable screws. Knee 13:127–131

    Article  PubMed  Google Scholar 

  44. Roger J, Bertani A, Vigouroux F, Mottier F, Gaillard R, Have L, Rongièras F (2020) ACL reconstruction using a quadruple semitendinosus graft with cortical fixations gives suitable isokinetic and clinical outcomes after 2 years. Knee Surg Sports Traumatol Arthrosc 28:2468–2477

    Article  PubMed  Google Scholar 

  45. Samuelsen BT, Webster KE, Johnson NR, Hewett TE, Krych AJ (2017) Hamstring autograft versus patellar tendon autograft for acl reconstruction: is there a difference in graft failure rate? a meta-analysis of 47,613 patients. Clin Orthop Relat Res 475:2459–2468

    Article  PubMed  PubMed Central  Google Scholar 

  46. Scheffler SU, Unterhauser FN, Weiler A (2008) Graft remodeling and ligamentization after cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 16:834–842

    Article  CAS  PubMed  Google Scholar 

  47. Van Dyck P, Zazulia K, Smekens C, Heusdens CHW, Janssens T, Sijbers J (2019) Assessment of anterior cruciate ligament graft maturity with conventional magnetic resonance imaging: a systematic literature review. Orthop J Sports Med 7:232596711984901

    Article  Google Scholar 

  48. Weiler A, Peters G, Mäurer J, Unterhauser FN, Südkamp NP (2001) Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging: a two-year study in sheep. Am J Sports Med 29:751–761

    Article  CAS  PubMed  Google Scholar 

  49. Wilson TC, Kantaras A, Atay A, Johnson DL (2004) Tunnel enlargement after anterior cruciate ligament surgery. Am J Sports Med 32:543–549

    Article  PubMed  Google Scholar 

  50. Xie X, Liu X, Chen Z, Yu Y, Peng S, Li Q (2015) A meta-analysis of bone–patellar tendon–bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. Knee 22:100–110

    Article  PubMed  Google Scholar 

  51. Yamazaki S, Yasuda K, Tomita F, Minami A, Tohyama H (2006) The effect of intraosseous graft length on tendon-bone healing in anterior cruciate ligament reconstruction using flexor tendon. Knee Surg Sports Traumatol Arthrosc 14:1086–1093

    Article  PubMed  Google Scholar 

  52. Yue L, DeFroda SF, Sullivan K, Garcia D, Owens BD (2020) Mechanisms of bone tunnel enlargement following anterior cruciate ligament reconstruction. JBJS Rev 8:e0120

    Article  PubMed  Google Scholar 

  53. Zhang S, Liu S, Yang L, Chen S, Chen S, Chen J (2020) Morphological changes of the femoral tunnel and their correlation with hamstring tendon autograft maturation up to 2 years after anterior cruciate ligament reconstruction using femoral cortical suspension. Am J Sports Med 48:554–564

    Article  PubMed  Google Scholar 

  54. Zhang Y, Liu S, Chen Q, Hu Y, Sun Y, Chen J (2020) Maturity progression of the entire anterior cruciate ligament graft of insertion-preserved hamstring tendons by 5 years: a prospective randomized controlled study based on magnetic resonance imaging evaluation. Am J Sports Med 48:2970–2977

    Article  PubMed  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Biset.

Ethics declarations

Conflict of interest

N. Bouguennec is a consultant for SBM, N. Graveleau is a consultant for SBM, and P. Colombet has received royalties from SBM, all of which is unrelated to this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biset, A., Douiri, A., Robinson, J.R. et al. Tibial tunnel expansion does not correlate with four-strand graft maturation after ACL reconstruction using adjustable cortical suspensory fixation. Knee Surg Sports Traumatol Arthrosc 31, 1761–1770 (2023). https://doi.org/10.1007/s00167-022-07051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-022-07051-x

Keywords

Navigation