Skip to main content
Log in

Direct suturing quadriceps tendon to a continuous loop with a suspensory button provides biomechanically superior fixation in ACL reconstruction

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To compare the biomechanical strength of different fixation configurations using suspensory buttons in a soft-tissue quadriceps tendon (QT) grafts in anterior cruciate ligament (ACL) reconstruction.

Methods

Forty bovine QTs, 6-cm long and 10-mm wide, were allocated into four groups with different suture configurations using suspensory buttons (n = 10 in each group): Group A, a baseball suture with a knot tied to the continuous loop with a suspensory button; Group B, same configuration as in Group A but with the knot tied at the opposite end of the baseball suture; Group C, a continuous loop with a suspensory button stitched directly to the QT with simple sutures, and Group D, a baseball suture tied directly to a suspensory button. Biomechanical testing was performed by preloading followed by cyclic loading for 500 cycles between 10 and 100 N. The length of elongation (mm) and maximum load to failure (N) were recorded, and compared among the four groups.

Results

Group C showed significantly smaller elongation (4.1 mm [95% CI 3.1–5.2]) than Group A (8.2 mm [95% CI 7.0–9.4]), Group B (10.5 mm [95% CI 7.7–13.3]), and Group D (8.5 mm [95% CI 7.0–9.9]) (A–C; P = 0.004, B–C; P = 0.0001, C–D; P = 0.0018). The maximum load to failure in Group C (386 N [95%CI 306–466]) was significantly higher than that in Group A (196 N [95% CI 141–251]), Group B (226 N [95% CI 164–289]), and Group D (212 N [95%CI 171–253]) (A–C; P = 0.0001, B–C; P = 0.0009, C–D; P = 0.0002). No significant differences were observed between Group A, B, and D in terms of elongation and maximum load to failure.

Conclusion

The soft-tissue QT graft fixation configuration stitched directly to a continuous loop with suspensory button using simple sutures exhibits small elongation and high maximum load to failure among the four configurations. Regarding clinical relevance, direct suturing of the soft-tissue QT to a continuous loop with a suspensory button may be advantageous for femoral fixation in ACL reconstruction from a biomechanical perspective, and warrant future development of a novel fixation device using this principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Araki D, Miller RM, Fujimaki Y, Hoshino Y, Musahl V, Debski RE (2015) Effect of tear location on propagation of isolated supraspinatus tendon tears during increasing levels of cyclic loading. J Bone Joint Surg Am 97(4):273–278

    Article  Google Scholar 

  2. Barber FA, Howard MS, Piccirillo J, Spenciner DB (2019) A biomechanical comparison of six suture configurations for soft tissue–based graft traction and fixation. Arthroscopy 35(4):1163–1169

    Article  Google Scholar 

  3. Belk JW, Kraeutler MJ, Marshall HA, Goodrich JA, McCarty EC (2018) Quadriceps tendon autograft for primary anterior cruciate ligament reconstruction: a systematic review of comparative studies with minimum 2-year follow-up. Arthroscopy 34(5):1699–1707

    Article  Google Scholar 

  4. Castile RM, Jenkins MJ, Lake SP, Brophy RH (2020) Microstructural and mechanical properties of grafts commonly used for cruciate ligament reconstruction. J Bone Joint Surg 102(22):1948–1955

    Article  Google Scholar 

  5. Crum RJ, Kay J, Lesniak BP, Getgood A, Musahl V, de SA D, (2021) Bone versus all soft tissue quadriceps tendon autografts for anterior cruciate ligament reconstruction: a systematic review. Arthroscopy 37(3):1040–1052

    Article  Google Scholar 

  6. Crum RJ, De Sa D, Kanakamedala AC, Obioha OA, Lesniak BP, Musahl V (2020) Aperture and suspensory fixation equally efficacious for quadriceps tendon graft fixation in primary ACL reconstruction: a systematic review. J Knee Surg 33(7):704–721

    Article  Google Scholar 

  7. Deramo DM, White KL, Parks BG, Hinton RY (2008) Krackow locking stitch versus nonlocking premanufactured loop stitch for soft-tissue fixation: a biomechanical study. Arthroscopy 24(5):599–603

    Article  Google Scholar 

  8. Diermeier T, Tisherman R, Hughes J, Tulman M, Baum Coffey E, Fink C et al (2020) Quadriceps tendon anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 28(8):2644–2656

    Article  Google Scholar 

  9. Domnick C, Wieskötter B, Raschke MJ, Schulze M, Kronenberg D, Wefelmeier M et al (2016) Evaluation of biomechanical properties: are porcine flexor tendons and bovine extensor tendons eligible surrogates for human tendons in in vitro studies? Arch Orthop Trauma Surg 136(10):1465–1471

    Article  CAS  Google Scholar 

  10. Häner M, Bierke S, Petersen W (2016) Anterior cruciate ligament revision surgery: ipsilateral quadriceps versus contralateral semitendinosus-gracilis autografts. Arthroscopy 32(11):2308–2317

    Article  Google Scholar 

  11. Hapa O, Erduran M, Havitçioǧlu H, Çeçen B, Akşahin E, Güler S et al (2013) Strength of different krackow stitch configurations using high-strength suture. J Foot Ankle Surg 52(4):448–450

    Article  Google Scholar 

  12. Hughes JD, Vaswani R, Gibbs CM, Tisherman RT, Musahl V (2020) Anterior cruciate ligament reconstruction with a partial-thickness quadriceps tendon graft secured with a continuous-loop fixation device. Arthrosc Tech 9(5):e603–e609

    Article  Google Scholar 

  13. Hunnicutt JL, Gregory CM, McLeod MM, Woolf SK, Chapin RW, Slone HS (2019) Quadriceps recovery after anterior cruciate ligament reconstruction with quadriceps tendon versus patellar tendon autografts. Orthop J Sports Med 7(4):2325967119839786

    Article  Google Scholar 

  14. Hurley ET, Calvo-Gurry M, Withers D, Farrington SK, Moran R, Moran CJ (2018) Quadriceps tendon autograft in anterior cruciate ligament reconstruction: a systematic review. Arthroscopy 34(5):1690–1698

    Article  Google Scholar 

  15. Jiang J, Mat Jais IS, Yam AKT, McGrouther DA, Tay SC (2017) A Biomechanical comparison of different knots tied on fibrewire suture. J Hand Surg Asian Pac 22(1):65–69

    Article  Google Scholar 

  16. Johnston TR, Hu J, Gregory B, Liles J, Riboh J (2020) Transphyseal anterior cruciate ligament reconstruction using hybrid transtibial femoral drilling and a quadriceps tendon autograft. Arthrosc Tech 9(8):e1121–e1131

    Article  Google Scholar 

  17. Kanakamedala AC, de Sa D, Obioha OA, Arakgi ME, Schmidt PB, Lesniak BP et al (2019) No difference between full thickness and partial thickness quadriceps tendon autografts in anterior cruciate ligament reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc 27(1):105–116

    Article  Google Scholar 

  18. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15(2):155–163

    Article  Google Scholar 

  19. Lawrence JTR, Bowers AL, Belding J, Cody SR, Ganley TJ (2010) All-epiphyseal anterior cruciate ligament reconstruction in skeletally immature patients. Clin Orthop Relat Res 468(7):1971–1977

    Article  Google Scholar 

  20. Le AH, Roach WB, Mauntel TC, Hendershot BD, Helgeson MD, Colantonio DF et al (2021) A biomechanical comparison of high-tensile strength tape versus high-tensile strength suture for tendon fixation under cyclic loading. Arthroscopy 37(9):2925–2933

    Article  Google Scholar 

  21. Lund B, Nielsen T, Faunø P, Christiansen SE, Lind M (2014) Is quadriceps tendon a better graft choice than patellar tendon? A prospective randomized study. Arthroscopy 30(5):593–598

    Article  Google Scholar 

  22. Mayr R, Heinrichs CH, Eichinger M, Smekal V, Schmoelz W, Attal R (2016) Preparation techniques for all-inside ACL cortical button grafts: a biomechanical study. Knee Surg Sports Traumatol Arthrosc 24(9):2983–2989

    Article  Google Scholar 

  23. Michel PA, Domnick C, Raschke MJ, Kittl C, Glasbrenner J, Deitermann L et al (2019) Soft tissue fixation strategies of human quadriceps tendon grafts: a biomechanical study. Arthroscopy 35(11):3069–3076

    Article  Google Scholar 

  24. Middleton KK, Hamilton T, Irrgang JJ, Karlsson J, Harner CD, Fu FH (2014) Anatomic anterior cruciate ligament (ACL) reconstruction: a global perspective. Part 1. Knee Surg Sports Traumatol Arthrosc 22(7):1467–1482

    Article  CAS  Google Scholar 

  25. Mouarbes D, Menetrey J, Marot V, Courtot L, Berard E, Cavaignac E (2019) Anterior cruciate ligament reconstruction: a systematic review and meta-analysis of outcomes for quadriceps tendon autograft versus bone–patellar tendon–bone and hamstring-tendon autografts. Am J Sports Med 47(14):3531–3540

    Article  Google Scholar 

  26. Nakanishi Y, Hoshino Y, Nagamune K, Yamamoto T, Nagai K, Araki D et al (2020) Radial meniscal tears are best repaired by a modified “Cross” tie-grip suture based on a biomechanical comparison of 4 repair techniques in a porcine model. Orthop J Sports Med 8(7):2325967120935810

    Article  Google Scholar 

  27. Runer A, Csapo R, Hepperger C, Herbort M, Hoser C, Fink C (2020) Anterior cruciate ligament reconstructions with quadriceps tendon autograft result in lower graft rupture rates but similar patient-reported outcomes as compared with hamstring tendon autograft: a comparison of 875 patients. Am J Sports Med 48(9):2195–2204

    Article  Google Scholar 

  28. Saper MG (2018) Quadriceps tendon autograft anterior cruciate ligament reconstruction with independent suture tape reinforcement. Arthrosc Tech 7(11):e1221–e1229

    Article  Google Scholar 

  29. Sasaki N, Farraro KF, Kim KE, Woo SLY (2014) Biomechanical evaluation of the quadriceps tendon autograft for anterior cruciate ligament reconstruction: a cadaveric study. Am J Sports Med 42(3):723–730

    Article  Google Scholar 

  30. Shani RH, Umpierez E, Nasert M, Hiza EA, Xerogeanes J (2016) Biomechanical comparison of quadriceps and patellar tendon grafts in anterior cruciate ligament reconstruction. Arthroscopy 32(1):71–75

    Article  Google Scholar 

  31. Shea KG, Burlile JF, Richmond CG, Ellis HB, Wilson PL, Fabricant PD et al (2019) Quadriceps tendon graft anatomy in the skeletally immature patient. Orthop J Sports Med 7(7):2325967119856578

    Article  Google Scholar 

  32. Sheean AJ, Musahl V, Slone HS, Xerogeanes JW, Milinkovic D, Fink C et al (2018) Quadriceps tendon autograft for arthroscopic knee ligament reconstruction: use it now, use it often. Br J Sport Med 52(11):698–701

    Article  Google Scholar 

  33. Slone HS, Ashford WB, Xerogeanes JW (2016) Minimally invasive quadriceps tendon harvest and graft preparation for all-inside anterior cruciate ligament reconstruction. Arthrosc Tech 5(5):e1049–e1056

    Article  Google Scholar 

  34. Slone HS, Romine SE, Premkumar A, Xerogeanes JW (2015) Quadriceps tendon autograft for anterior cruciate ligament reconstruction: a comprehensive review of current literature and systematic review of clinical results. Arthroscopy 31(3):541–554

    Article  Google Scholar 

  35. Sprowls GR, Robin BN (2018) The Quad link technique for an all-soft-tissue quadriceps graft in minimally invasive, all-inside anterior cruciate ligament reconstruction. Arthrosc Tech 7(8):e845–e852

    Article  Google Scholar 

  36. Todor A, Caterev S, Nistor DV, Khallouki Y (2016) Free bone plug quadriceps tendon harvest and suspensory button attachment for anterior cruciate ligament reconstruction. Arthrosc Tech 5(3):e541–e544

    Article  Google Scholar 

  37. Urchek R, Karas S (2019) Biomechanical comparison of quadriceps and 6-strand hamstring tendon grafts in anterior cruciate ligament reconstruction. Orthop J Sports Med 7(10):2325967119879113

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Masato Nakanishi for assistance in creating the figure and Toshiki Hirai for providing the bovine knees.

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Contributions

KaN, YH, DA, NK, TM, and RK conceived the study, and KK, KaN, and YH participated in the design of the study. KK, KaN, and KoN performed the biomechanical testing. KK, and KaN conducted the pertinent statistical tests and analyses. All authors participated in the interpretation of the data. KK, KaN, YN wrote the manuscript, and all authors performed critical revision of the manuscript for intellectual content. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Kanto Nagai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

No ethics approval for this study was required by the institutional review board of our institute.

Informed consent

No informed consent for this study was required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamada, K., Nagai, K., Nagamune, K. et al. Direct suturing quadriceps tendon to a continuous loop with a suspensory button provides biomechanically superior fixation in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 30, 2307–2313 (2022). https://doi.org/10.1007/s00167-021-06805-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06805-3

Keywords

Navigation