Skip to main content
Log in

Preparation techniques for all-inside ACL cortical button grafts: a biomechanical study

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Performing all-inside anterior cruciate ligament reconstruction using cortical button fixation, the tendon graft has to be secured in a closed loop with sutures. In the present study, the graft secured with four sutures was compared with two reduced-suture material graft preparation techniques.

Methods

A bovine tendon graft folded over two adjustable-length loop cortical button devices was secured using the following techniques: 1, four buried-knot sutures; 2, two sutures on the tibial end only; and 3, two sutures on the tibial graft end with additional suspension on the tibial cortical button. Each group consisted of eight specimens and underwent cyclic loading followed by a load-to-failure test.

Results

The least graft elongation after cyclic loading was observed for the graft with four sutures (6.1 ± 0.6 mm), followed by the graft with two sutures and additional suspension (6.3 ± 0.8 mm) and the graft with two sutures (7.0 ± 0.7 mm). The difference in graft elongation between four sutures and only two sutures was significant (P < 0.05). The ultimate failure loads were highest for the graft with two sutures and additional suspension (801 ± 107 N), followed by the graft with four sutures (766 ± 70 N), and the graft with two sutures (699 ± 87 N). No significant (n.s.) differences were observed between the ultimate failure loads in the three groups.

Conclusions

For the reduction in suture material to two sutures, additional suspension can be used in order to reduce the graft lengthening. Performing a suture-reducing graft can save operating time and costs. However, each of the three all-inside button graft techniques showed considerable graft elongation indicating a risk of graft lengthening in the early postoperative period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aga C, Rasmussen MT, Smith SD, Jansson KS, LaPrade RF, Engebretsen L, Wijdicks CA (2013) Biomechanical comparison of interference screws and combination screw and sheath devices for soft tissue anterior cruciate ligament reconstruction on the tibial side. Am J Sports Med 41:841–848

    Article  PubMed  Google Scholar 

  2. Barrow AE, Pilia M, Guda T, Kadrmas WR, Burns TC (2014) Femoral suspension devices for anterior cruciate ligament reconstruction: do adjustable loops lengthen? Am J Sports Med 42:343–349

    Article  PubMed  Google Scholar 

  3. Benea H, d’Astorg H, Klouche S, Bauer T, Tomoaia G, Hardy P (2014) Pain evaluation after all-inside anterior cruciate ligament reconstruction and short term functional results of a prospective randomized study. Knee 21:102–106

    Article  PubMed  Google Scholar 

  4. Beynnon BD, Johnson RJ, Fleming BC, Kannus P, Kaplan M, Samani J, Renstrom P (2002) Anterior cruciate ligament replacement: comparison of bone-patellar tendon-bone grafts with two-strand hamstring grafts. A prospective, randomized study. J Bone Joint Surg Am 84-A:1503–1513

    PubMed  Google Scholar 

  5. Brown CH Jr, Wilson DR, Hecker AT, Ferragamo M (2004) Graft-bone motion and tensile properties of hamstring and patellar tendon anterior cruciate ligament femoral graft fixation under cyclic loading. Arthroscopy 20:922–935

    Article  PubMed  Google Scholar 

  6. Caborn DN, Brand JC Jr, Nyland J, Kocabey Y (2004) A biomechanical comparison of initial soft tissue tibial fixation devices: the Intrafix versus a tapered 35-mm bioabsorbable interference screw. Am J Sports Med 32:956–961

    Article  PubMed  Google Scholar 

  7. Camarda L, Pitarresi G, Moscadini S, Marannano G, Sanfilippo A, D’Arienzo M (2014) Effect of suturing the femoral portion of a four-strand graft during an ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 22:1040–1046

    Article  PubMed  Google Scholar 

  8. Cerulli G, Zamarra G, Vercillo F, Pelosi F (2011) ACL reconstruction with “the original all-inside technique”. Knee Surg Sports Traumatol Arthrosc 19:829–831

    Article  PubMed  Google Scholar 

  9. Donahue TL, Gregersen C, Hull ML, Howell SM (2001) Comparison of viscoelastic, structural, and material properties of double-looped anterior cruciate ligament grafts made from bovine digital extensor and human hamstring tendons. J Biomech Eng 123:162–169

    Article  CAS  PubMed  Google Scholar 

  10. Greis PE, Burks RT, Bachus K, Luker MG (2001) The influence of tendon length and fit on the strength of a tendon-bone tunnel complex. A biomechanical and histologic study in the dog. Am J Sports Med 29:493–497

    CAS  PubMed  Google Scholar 

  11. Hoher J, Scheffler SU, Withrow JD, Livesay GA, Debski RE, Fu FH, Woo SL (2000) Mechanical behavior of two hamstring graft constructs for reconstruction of the anterior cruciate ligament. J Orthop Res 18:456–461

    Article  CAS  PubMed  Google Scholar 

  12. Lubowitz JH (2012) All-inside anterior cruciate ligament graft link: graft preparation technique. Arthrosc Tech 1:e165–e168

    Article  PubMed  PubMed Central  Google Scholar 

  13. Micucci CJ, Frank DA, Kompel J, Muffly M, Demeo PJ, Altman GT (2010) The effect of interference screw diameter on fixation of soft-tissue grafts in anterior cruciate ligament reconstruction. Arthroscopy 26:1105–1110

    Article  PubMed  Google Scholar 

  14. Nurmi JT, Kannus P, Sievanen H, Jarvela T, Jarvinen M, Jarvinen TL (2004) Interference screw fixation of soft tissue grafts in anterior cruciate ligament reconstruction: part 1: effect of tunnel compaction by serial dilators versus extraction drilling on the initial fixation strength. Am J Sports Med 32:411–417

    Article  PubMed  Google Scholar 

  15. O’Neill DB (2004) Revision arthroscopically assisted anterior cruciate ligament reconstruction with previously unharvested ipsilateral autografts. Am J Sports Med 32:1833–1841

    Article  PubMed  Google Scholar 

  16. Petre BM, Smith SD, Jansson KS, de Meijer PP, Hackett TR, LaPrade RF, Wijdicks CA (2013) Femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction: a comparative biomechanical study. Am J Sports Med 41:416–422

    Article  PubMed  Google Scholar 

  17. Walsh MP, Wijdicks CA, Parker JB, Hapa O, LaPrade RF (2009) A comparison between a retrograde interference screw, suture button, and combined fixation on the tibial side in an all-inside anterior cruciate ligament reconstruction: a biomechanical study in a porcine model. Am J Sports Med 37:160–167

    Article  PubMed  Google Scholar 

  18. Weiler A, Schmeling A, Stohr I, Kaab MJ, Wagner M (2007) Primary versus single-stage revision anterior cruciate ligament reconstruction using autologous hamstring tendon grafts: a prospective matched-group analysis. Am J Sports Med 35:1643–1652

    Article  PubMed  Google Scholar 

  19. Zamarra G, Fisher MB, Woo SL, Cerulli G (2010) Biomechanical evaluation of using one hamstrings tendon for ACL reconstruction: a human cadaveric study. Knee Surg Sports Traumatol Arthrosc 18:11–19

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Clemens Unterwurzacher for the illustrations and photography, and Arthrex Inc. for providing all implants free of charge.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The manuscript does not contain clinical studies or patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Attal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayr, R., Heinrichs, C.H., Eichinger, M. et al. Preparation techniques for all-inside ACL cortical button grafts: a biomechanical study. Knee Surg Sports Traumatol Arthrosc 24, 2983–2989 (2016). https://doi.org/10.1007/s00167-015-3605-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-015-3605-9

Keywords

Navigation