Skip to main content

Advertisement

Log in

Laterally shifted tibial tunnel can be the risk of residual knee laxity for double-bundle anterior cruciate ligament reconstruction

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To elucidate the relationship between graft tunnel position and knee laxity in the cases of double-bundle ACL reconstruction.

Methods

Total of 132 cases were included. Femoral and tibial tunnels were evaluated by quadrant method on 3D-CT. As additional reference of tibia, the distances from medial tibial spine to the tunnel center (DMS) and from Parsons’ knob to the tunnel center (DPK) were evaluated; %DMS/ML and %DPK/AP were calculated (ML and AP: mediolateral and anteroposterior width of tibial plateau). Preoperative and postoperative (1 year from surgery) stabilities were evaluated by Lachman and pivot-shift procedures. If there was ≥ 2 mm side-to-side difference, the subject was defined as having anterior knee laxity (AKL); if the pivot-shift phenomenon was observed with IKDC grade ≥ 1, there was rotatory knee laxity (RKL). Multiple logistic regression analysis was conducted with the prevalence of AKL or RKL as the dependent variable and with tunnel positions as the independent variables.

Results

Overall, 21 subjects (15.9%) showed AKL, and 15 subjects (11.4%) showed RKL. Those with postoperative laxity showed higher %DMS/ML and higher femoral position than those without laxity. Regarding posterolateral bundle, logistic regression model estimated that %DMS/ML was associated with the prevalence of AKL (B = 0.608; p < 0.001) and RKL (B = 0.789; p < 0.001); %high-low femoral tunnel position (B =  − 0.127; p = 0.023) was associated with that of RKL.

Conclusion

There was the risk of residual knee laxity in ACL-reconstructed knee when tibial tunnel shifted more laterally or higher femoral tunnel was created with regard to posterolateral bundle.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahn HW, Seon JK, Song EK, Park CJ, Lim HA (2019) Comparison of clinical and radiologic outcomes and second-look arthroscopic findings after anterior cruciate ligament reconstruction using fixed and adjustable loop cortical suspension devices. Arthroscopy 35:1736–1742

    Article  PubMed  Google Scholar 

  2. Ahn JH, Kim JD, Kang HW (2015) Anatomic placement of the femoral tunnels in double-bundle anterior cruciate ligament reconstruction correlates with improved graft maturation and clinical outcomes. Arthroscopy 31:2152–2161

    Article  PubMed  Google Scholar 

  3. Araki D, Kuroda R, Matsumoto T, Nagamune K, Matsushita T, Hoshino Y, Oka S, Nishizawa Y, Kurosaka M (2014) Three-dimensional analysis of bone tunnel changes after anatomic double-bundle anterior cruciate ligament reconstruction using multidetector-row computed tomography. Am J Sports Med 42:2234–2241

    Article  PubMed  Google Scholar 

  4. Araujo PH, Asai S, Pinto M, Protta T, Middleton K, Linde-Rosen M, Irrgang J, Smolinski P, Fu FH (2015) ACL graft position affects in situ graft force following ACL reconstruction. J Bone Joint Surg Am 97:1767–1773

    Article  PubMed  Google Scholar 

  5. Asai S, Kim D, Hoshino Y, Moon C-W, Maeyama A, Linde M, Smolinski P, Fu FH (2018) Coronal tibial anteromedial tunnel location has minimal effect on knee biomechanics. Knee Surg Sports Traumatol Arthrosc 26:2960–2965

    Article  PubMed  Google Scholar 

  6. Asmussen CAP, Attrup ML, Thorborg K, Hölmich P (2018) Passive knee stability after anterior cruciate ligament reconstruction using the Endobutton or ToggleLoc With ZipLoop as a femoral fixation device: a comparison of 1654 patients from the Danish Knee Ligament Reconstruction Registry. Orthop J Sports Med 6:2325967118778507

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barrow AE, Pilia M, Guda T, Kadrmas WR, Burns TC (2014) Femoral suspension devices for anterior cruciate ligament reconstruction. Am J Sports Med 42:343–349

    Article  PubMed  Google Scholar 

  8. Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10:14–21 (Discussion 21-2)

    CAS  PubMed  Google Scholar 

  9. Boyle MJ, Vovos TJ, Walker CG, Stabile KJ, Roth JM, Garrett WE (2015) Does adjustable-loop femoral cortical suspension loosen after anterior cruciate ligament reconstruction? A retrospective comparative study. Knee 22:304–308

    Article  PubMed  Google Scholar 

  10. Chiang E-R, Chen K-H, Lin AC-C, Wang S-T, Wu H-T, Ma H-L, Chang M-C, Liu C-L, Chen T-H (2019) Comparison of tunnel enlargement and clinical outcome between bioabsorbable interference screws and cortical button-post fixation in arthroscopic double-bundle anterior cruciate ligament reconstruction: a prospective, randomized study with a minimum follow-up of 2 years. Arthroscopy 35:544–551

    Article  PubMed  Google Scholar 

  11. Chiba D, Tsuda E, Sasaki S, Liu X, Ishibashi Y (2017) Anthropometric and skeletal parameters predict 2-strand semitendinosus tendon size in double-bundle anterior cruciate ligament reconstruction. Orthop J Sports Med 5:2325967117720148

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chiba D, Tsuda E, Tsukada H, Iio K, Ishibashi Y (2017) Tunnel malpositions in anterior cruciate ligament risk cartilaginous changes and bucket-handle meniscal tear: Arthroscopic survey in both primary and revision surgery. J Orthop Sci 22:892–897

    Article  PubMed  Google Scholar 

  13. Chiba D, Yamamoto Y, Kimura Y, Sasaki S, Tsuda E, Ishibashi Y (2021) Combination of anterior tibial and femoral tunnels makes the signal intensity of antero-medial graft higher in double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 29:783–792

    Article  PubMed  Google Scholar 

  14. Choi N-H, Yang B-S, Victoroff BN (2017) Clinical and radiological outcomes after hamstring anterior cruciate ligament reconstructions: comparison between fixed-loop and adjustable-loop cortical suspension devices. Am J Sports Med 45:826–831

    Article  PubMed  Google Scholar 

  15. Devitt BM, Maes M, Feller JA, Webster KE (2020) No long-term tunnel enlargement following anterior cruciate ligament reconstruction using autograft hamstring tendon with dual suspensory fixation. Knee Surg Sports Traumatol Arthrosc 28:2157–2162

    Article  CAS  PubMed  Google Scholar 

  16. Diermeier T, Meredith SJ, Irrgang JJ et al (2020) Patient-reported and quantitative outcomes of anatomic anterior cruciate ligament reconstruction with hamstring tendon autografts. Orthop J Sports Med 8:2325967120926159

    Article  PubMed  PubMed Central  Google Scholar 

  17. Eysturoy NH, Nissen KA, Nielsen T, Lind M (2018) The influence of graft fixation methods on revision rates after primary anterior cruciate ligament reconstruction. Am J Sports Med 46:524–530

    Article  PubMed  Google Scholar 

  18. Forsythe B, Kopf S, Wong AK, Martins CAQ, Anderst W, Tashman S, Fu FH (2010) The location of femoral and tibial tunnels in anatomic double-bundle anterior cruciate ligament reconstruction analyzed by three-dimensional computed tomography models. J Bone Joint Surg Am 92:1418–1426

    Article  PubMed  Google Scholar 

  19. Fujie H, Otsubo H, Fukano S, Suzuki T, Suzuki D, Mae T, Shino K (2011) Mechanical functions of the three bundles consisting of the human anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 19:47–53

    Article  Google Scholar 

  20. Hoshino Y, Araujo P, Ahldén M, Samuelsson K, Muller B, Hofbauer M, Wolf MR, Irrgang JJ, Fu FH, Musahl V (2013) Quantitative evaluation of the pivot shift by image analysis using the iPad. Knee Surg Sports Traumatol Arthrosc 21:975–980

    Article  PubMed  Google Scholar 

  21. Hosseini A, Lodhia P, de Velde SKV, Asnis PD, Zarins B, Gill TJ, Li G (2012) Tunnel position and graft orientation in failed anterior cruciate ligament reconstruction: a clinical and imaging analysis. Int Orthop 36:845–852

    Article  PubMed  Google Scholar 

  22. Houck DA, Kraeutler MJ, McCarty EC, Bravman JT (2018) Fixed-versus adjustable-loop femoral cortical suspension devices for anterior cruciate ligament reconstruction: a systematic review and meta-analysis of biomechanical studies. Orthop J Sports Med 6:2325967118801762

    Article  PubMed  PubMed Central  Google Scholar 

  23. Iriuchishima T, Ryu K, Aizawa S, Fu FH (2016) The difference in centre position in the ACL femoral footprint inclusive and exclusive of the fan-like extension fibres. Knee Surg Sports Traumatol Arthrosc 24:254–259

    Article  PubMed  Google Scholar 

  24. Iriuchishima T, Suruga M, Yahagi Y, Iwama G, Aizawa S (2020) Morphology of the resident’s ridge, and the cortical thickness in the lateral wall of the femoral intercondylar notch correlate with the morphological variations of the Blumensaat’s line. Knee Surg Sports Traumatol Arthrosc 28:2668–2674

    Article  PubMed  Google Scholar 

  25. Jacobsen K (1974) Area intercondylaris tibiae: osseous surface structure and its relation to soft tissue structures and applications to radiography. J Anat 117:605–618

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kusano M, Yonetani Y, Mae T, Nakata K, Yoshikawa H, Shino K (2017) Tibial insertions of the anterior cruciate ligament and the anterior horn of the lateral meniscus: a histological and computed tomographic study. Knee 24:782–791

    Article  PubMed  Google Scholar 

  28. Lee JK, Lee S, Seong SC, Lee MC (2015) Anatomy of the anterior cruciate ligament insertion sites: comparison of plain radiography and three-dimensional computed tomographic imaging to anatomic dissection. Knee Surg Sports Traumatol Arthrosc 23:2297–2305

    Article  PubMed  Google Scholar 

  29. Lopomo N, Signorelli C, Bonanzinga T, Muccioli GMM, Visani A, Zaffagnini S (2012) Quantitative assessment of pivot-shift using inertial sensors. Knee Surg Sports Traumatol Arthrosc 20:713–717

    Article  PubMed  Google Scholar 

  30. Muneta T, Yamamoto H, Ishibashi T, Asahina S, Murakami S, Furuya K (1995) The effects of tibial tunnel placement and roofplasty on reconstructed anterior cruciate ligament knees. Arthroscopy 11:57–62

    Article  CAS  PubMed  Google Scholar 

  31. Onggo JR, Nambiar M, Pai V (2019) Fixed-versus adjustable-loop devices for femoral fixation in anterior cruciate ligament reconstruction: a systematic review. Arthroscopy 35:2484–2498

    Article  PubMed  Google Scholar 

  32. Ranjan R, Gaba S, Goel L, Asif N, Kalra M, Kumar R, Kumar A (2018) In vivo comparison of a fixed loop (EndoButton CL) with an adjustable loop (TightRope RT) device for femoral fixation of the graft in ACL reconstruction: a prospective randomized study and a literature review. J Orthop Surg (Hong Kong) 26:2309499018799787

    Article  Google Scholar 

  33. Rothrauff BB, Jorge A, de Sa D, Kay J, Fu FH, Musahl V (2019) Anatomic ACL reconstruction reduces risk of post-traumatic osteoarthritis: a systematic review with minimum 10-year follow-up. Knee Surg Sports Traumatol Arthrosc 28:1072–1084

    Article  PubMed  Google Scholar 

  34. Sakamoto Y, Tsukada H, Sasaki S, Kimura Y, Yamamoto Y, Tsuda E, Ishibashi Y (2020) Effects of the tibial tunnel position on knee joint stability and meniscal contact pressure after double-bundle anterior cruciate ligament reconstruction. J Orthop Sci 25:1040–1046

    Article  PubMed  Google Scholar 

  35. Sasaki S, Tsuda E, Hiraga Y, Yamamoto Y, Maeda S, Sasaki E, Ishibashi Y (2016) Prospective randomized study of objective and subjective clinical results between double-bundle and single-bundle anterior cruciate ligament reconstruction. Am J Sports Med 44:855–864

    Article  PubMed  Google Scholar 

  36. Shimodaira H, Tensho K, Akaoka Y, Takanashi S, Kato H, Saito N (2017) Tibial tunnel positioning technique using bony/anatomical landmarks in anatomical anterior cruciate ligament reconstruction. Arthrosc Tech 6:e49–e55

    Article  PubMed  PubMed Central  Google Scholar 

  37. Siebold R, Schuhmacher P, Fernandez F, Śmigielski R, Fink C, Brehmer A, Kirsch J (2015) Flat midsubstance of the anterior cruciate ligament with tibial “C”-shaped insertion site. Knee Surg Sports Traumatol Arthrosc 23:3136–3142

    Article  PubMed  Google Scholar 

  38. Stanford FC, Kendoff D, Warren RF, Pearle AD (2009) Native anterior cruciate ligament obliquity versus anterior cruciate ligament graft obliquity. Am J Sports Med 37:114–119

    Article  PubMed  Google Scholar 

  39. Tachibana Y, Shino K, Mae T, Iuchi R, Take Y, Nakagawa S (2019) Anatomical rectangular tunnels identified with the arthroscopic landmarks result in excellent outcomes in ACL reconstruction with a BTB graft. Knee Surg Sports Traumatol Arthrosc 27:2680–2690

    Article  PubMed  Google Scholar 

  40. Taketomi S, Inui H, Nakamura K, Hirota J, Sanada T, Masuda H, Takeda H, Tanaka S, Nakagawa T (2014) Clinical outcome of anatomic double-bundle ACL reconstruction and 3D CT model-based validation of femoral socket aperture position. Knee Surg Sports Traumatol Arthrosc 22:2194–2201

    Article  PubMed  Google Scholar 

  41. Tsuda E, Ishibashi Y, Fukuda A, Yamamoto Y, Tsukada H, Ono S (2010) Tunnel position and relationship to postoperative knee laxity after double-bundle anterior cruciate ligament reconstruction with a transtibial technique. Am J Sports Med 38:698–706

    Article  PubMed  Google Scholar 

  42. Tsukada H, Ishibashi Y, Tsuda E, Fukuda A, Toh S (2008) Anatomical analysis of the anterior cruciate ligament femoral and tibial footprints. J Orthop Sci 13:122–129

    Article  PubMed  Google Scholar 

  43. Udagawa K, Niki Y, Enomoto H, Toyama Y, Suda Y (2014) Factors influencing graft impingement on the wall of the intercondylar notch after anatomic double-bundle anterior cruciate ligament reconstruction. Am J Sports Med 42:2219–2225

    Article  PubMed  Google Scholar 

  44. Vignos MF, Kaiser JM, Baer GS, Kijowski R, Thelen DG (2018) American Society of Biomechanics Clinical Biomechanics Award 2017: non-anatomic graft geometry is linked with asymmetric tibiofemoral kinematics and cartilage contact following anterior cruciate ligament reconstruction. Clin Biomech 56:75–83

    Article  Google Scholar 

  45. Wang H, Zhang B, Cheng C-K (2020) Stiffness and shape of the ACL graft affects tunnel enlargement and graft wear. Knee Surg Sports Traumatol Arthrosc 28:2184–2193

    Article  PubMed  Google Scholar 

  46. Zaffagnini S, Signorelli C, Grassi A et al (2018) Anatomic anterior cruciate ligament reconstruction using hamstring tendons restores quantitative pivot shift. Orthop J Sports Med 6:2325967118812364

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Contributions

DC chiefly drafted the manuscript and carried out the design of the study, the acquisition of data, and the analysis and interpretation of data. YY and ET revised the manuscript critically for important intellectual content. ES, SS, YK, and SY carried out the acquisition of data and helped to draft the manuscript. ET and YI revised the manuscript and conducted final approval of the manuscript to be submitted. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Daisuke Chiba.

Ethics declarations

Conflict of interest

All authors of the current study has no potential conflicts of interest.

Ethical approval

The ethical committee of Hirosaki university graduate school of medicine and Hirosaki university hospital approved this study (IRB No. 2012-250).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiba, D., Yamamoto, Y., Kimura, Y. et al. Laterally shifted tibial tunnel can be the risk of residual knee laxity for double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 30, 319–327 (2022). https://doi.org/10.1007/s00167-021-06546-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06546-3

Keywords

Navigation