Skip to main content

Advertisement

Log in

Anatomic characteristics of the knee influence the risk of suffering an isolated meniscal injury and the risk factors differ between women and men

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To analyse the relationship between multiple anatomic characteristics of the knee (tibia and femur) and isolated meniscal injury in women and men.

Methods

Forty-seven patients with isolated medial meniscal injuries, 62 patients with isolated lateral meniscal injuries, and 70 control subjects were included. Medial posterior tibial slope (MTS), lateral posterior tibial slope (LTS), medial tibial plateau depth (MTD), coronal tibial slope (CTS), femoral notch width (NW), femoral condylar width (FCW), intercondylar notch depth (ND), femoral notch width index (NWI), intercondylar notch shape index (NSI), and cruciate ligaments tensity (CLT) were measured from magnetic resonance images. Anatomic characteristics differing between groups were compared, and risk factors for isolated meniscal injury were identified by multivariate forward stepwise logistic regression for men and women separately.

Results

Risk factors for an isolated medial meniscal injury were a steeper MTS and a lowered MTD in men, and a steeper MTS and an increased NWI in women. Risk factors for isolated lateral meniscal injury were a steeper LTS and an increased NW in men, and a steeper LTS and a lowered ND in women. Risk factors for both medial and lateral meniscal injuries were a higher CTS, an increased NWI, and a looser CLT in men, and a higher CTS, an increased NSI, and a looser CLT in women.

Conclusion

The anatomic characteristics of the tibial plateau, femur, and cruciate ligaments influence the risk of suffering isolated meniscal injury, and the risk factors differ between men and women. This study provides a reference for developing identification criteria for those at risk of isolated meniscal injury.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All authors are sure that all data and materials support the published claims and comply with field standards.

References

  1. Agneskirchner JD, Hurschler C, Stukenborg-Colsman C, Imhoff AB, Lobenhoffer P (2004) Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees. Winner of the AGA-DonJoy Award 2004. Arch Orthop Trauma Surg 124:575–584

    Article  CAS  PubMed  Google Scholar 

  2. Allen CR, Wong EK, Livesay GA, Sakane M, Fu FH, Woo SL (2000) Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J Orthop Res 18:109–115

    Article  CAS  PubMed  Google Scholar 

  3. Amis AA, Gupte CM, Bull AM, Edwards A (2006) Anatomy of the posterior cruciate ligament and the meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc 14:257–263

    Article  CAS  PubMed  Google Scholar 

  4. Andernord D, Bjornsson H, Petzold M, Eriksson BI, Forssblad M, Karlsson J, Samuelsson K (2014) Surgical predictors of early revision surgery after anterior cruciate ligament reconstruction: results from the Swedish national knee ligament register on 13,102 patients. Am J Sports Med 42:1574–1582

    Article  PubMed  Google Scholar 

  5. Banks S, Bellemans J, Nozaki H, Whiteside LA, Harman M, Hodge WA (2003) Knee motions during maximum flexion in fixed and mobile-bearing arthroplasties. Clin Orthop Relat Res 410:131–138

    Article  Google Scholar 

  6. Bedi A, Kelly N, Baad M, Fox AJ, Ma Y, Warren RF, Maher SA (2012) Dynamic contact mechanics of radial tears of the lateral meniscus: implications for treatment. Arthroscopy 28:372–381

    Article  PubMed  Google Scholar 

  7. Beynnon BD, Hall JS, Sturnick DR, Desarno MJ, Gardner-Morse M, Tourville TW, Smith HC, Slauterbeck JR, Shultz SJ, Johnson RJ, Vacek PM (2014) Increased slope of the lateral tibial plateau subchondral bone is associated with greater risk of noncontact ACL injury in females but not in males: a prospective cohort study with a nested, matched case-control analysis. Am J Sports Med 42:1039–1048

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bhatia S, LaPrade CM, Ellman MB, LaPrade RF (2014) Meniscal root tears: significance, diagnosis, and treatment. Am J Sports Med 42:3016–3030

    Article  PubMed  Google Scholar 

  9. Butler DL, Noyes FR, Grood ES (1980) Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Jt Surg Am 62:259–270

    Article  CAS  Google Scholar 

  10. Chalmers PN, Mall NA, Moric M, Sherman SL, Paletta GP, Cole BJ, Bach BJ (2014) Does ACL reconstruction alter natural history? A systematic literature review of long-term outcomes. J Bone Joint Surg Am 96:292–300

    Article  PubMed  Google Scholar 

  11. Choi CJ, Choi YJ, Song IB, Choi CH (2011) Characteristics of radial tears in the posterior horn of the medial meniscus compared to horizontal tears. Clin Orthop Surg 3:128–132

    Article  PubMed  PubMed Central  Google Scholar 

  12. Davis TJ, Shelbourne KD, Klootwyk TE (1999) Correlation of the intercondylar notch width of the femur to the width of the anterior and posterior cruciate ligaments. Knee Surg Sports Traumatol Arthrosc 7:209–214

    Article  CAS  PubMed  Google Scholar 

  13. Defrate LE, Papannagari R, Gill TJ, Moses JM, Pathare NP, Li G (2006) The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am J Sports Med 34:1240–1246

    Article  PubMed  Google Scholar 

  14. Dienst M, Schneider G, Altmeyer K, Voelkering K, Georg T, Kramann B, Kohn D (2007) Correlation of intercondylar notch cross sections to the ACL size: a high resolution MR tomographic in vivo analysis. Arch Orthop Trauma Surg 127:253–260

    Article  PubMed  Google Scholar 

  15. Everhart JS, Flanigan DC, Simon RA, Chaudhari AM (2010) Association of noncontact anterior cruciate ligament injury with presence and thickness of a bony ridge on the anteromedial aspect of the femoral intercondylar notch. Am J Sports Med 38:1667–1673

    Article  PubMed  Google Scholar 

  16. Feucht MJ, Bigdon S, Bode G, Salzmann GM, Dovi-Akue D, Sudkamp NP, Niemeyer P (2015) Associated tears of the lateral meniscus in anterior cruciate ligament injuries: risk factors for different tear patterns. J Orthop Surg Res 10:34

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fok AW, Yau WP (2013) Delay in ACL reconstruction is associated with more severe and painful meniscal and chondral injuries. Knee Surg Sports Traumatol Arthrosc 21:928–933

    Article  PubMed  Google Scholar 

  18. Georgoulis AD, Papadonikolakis A, Papageorgiou CD, Mitsou A, Stergiou N (2003) Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med 31:75–79

    Article  PubMed  Google Scholar 

  19. Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32:376–382

    Article  PubMed  Google Scholar 

  20. Girgis FG, Marshall JL, Monajem A (1975) The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop Relat Res 106:216–231

    Article  Google Scholar 

  21. Hashemi J, Chandrashekar N, Gill B, Beynnon BD, Slauterbeck JR, Schutt RJ, Mansouri H, Dabezies E (2008) The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Jt Surg Am 90:2724–2734

    Article  Google Scholar 

  22. Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RJ, Dabezies E, Beynnon BD (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38:54–62

    Article  PubMed  Google Scholar 

  23. Hosseini A, Van de Velde S, Gill TJ, Li G (2012) Tibiofemoral cartilage contact biomechanics in patients after reconstruction of a ruptured anterior cruciate ligament. J Orthop Res 30:1781–1788

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hudek R, Schmutz S, Regenfelder F, Fuchs B, Koch PP (2009) Novel measurement technique of the tibial slope on conventional MRI. Clin Orthop Relat Res 467:2066–2072

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ireland ML, Ballantyne BT, Little K, McClay IS (2001) A radiographic analysis of the relationship between the size and shape of the intercondylar notch and anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 9:200–205

    Article  CAS  PubMed  Google Scholar 

  26. Keene GC, Bickerstaff D, Rae PJ, Paterson RS (1993) The natural history of meniscal tears in anterior cruciate ligament insufficiency. Am J Sports Med 21:672–679

    Article  CAS  PubMed  Google Scholar 

  27. Kennedy J, Jackson MP, O’Kelly P, Moran R (2010) Timing of reconstruction of the anterior cruciate ligament in athletes and the incidence of secondary pathology within the knee. J Bone Jt Surg Br 92:362–366

    Article  CAS  Google Scholar 

  28. Koenig JH, Ranawat AS, Umans HR, Difelice GS (2009) Meniscal root tears: diagnosis and treatment. Arthroscopy 25:1025–1032

    Article  PubMed  Google Scholar 

  29. Kolbe R, Schmidt-Hebbel A, Forkel P, Pogorzelski J, Imhoff AB, Feucht MJ (2019) Steep lateral tibial slope and lateral-to-medial slope asymmetry are risk factors for concomitant posterolateral meniscus root tears in anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 27:2585–2591

    Article  PubMed  Google Scholar 

  30. Kopf S, Colvin AC, Muriuki M, Zhang X, Harner CD (2011) Meniscal root suturing techniques: implications for root fixation. Am J Sports Med 39:2141–2146

    Article  PubMed  Google Scholar 

  31. LaPrade RF, Burnett QN (1994) Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries. A prospective study. Am J Sports Med 22:198–203

    Article  CAS  PubMed  Google Scholar 

  32. Li G, Park SE, DeFrate LE, Schutzer ME, Ji L, Gill TJ, Rubash HE (2005) The cartilage thickness distribution in the tibiofemoral joint and its correlation with cartilage-to-cartilage contact. Clin Biomech (Bristol, Avon) 20:736–744

    Article  Google Scholar 

  33. Lipps DB, Wilson AM, Ashton-Miller JA, Wojtys EM (2012) Evaluation of different methods for measuring lateral tibial slope using magnetic resonance imaging. Am J Sports Med 40:2731–2736

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lombardo S, Sethi PM, Starkey C (2005) Intercondylar notch stenosis is not a risk factor for anterior cruciate ligament tears in professional male basketball players: an 11-year prospective study. Am J Sports Med 33:29–34

    Article  PubMed  Google Scholar 

  35. Luczkiewicz P, Daszkiewicz K, Witkowski W, Chroscielewski J, Zarzycki W (2015) Influence of meniscus shape in the cross sectional plane on the knee contact mechanics. J Biomech 48:1356–1363

    Article  PubMed  Google Scholar 

  36. Mansori AE, Lording T, Schneider A, Dumas R, Servien E, Lustig S (2018) Incidence and patterns of meniscal tears accompanying the anterior cruciate ligament injury: possible local and generalized risk factors. Int Orthop 42:2113–2121

    Article  PubMed  Google Scholar 

  37. Marouane H, Shirazi-Adl A, Hashemi J (2015) Quantification of the role of tibial posterior slope in knee joint mechanics and ACL force in simulated gait. J Biomech 48:1899–1905

    Article  CAS  PubMed  Google Scholar 

  38. McDaniel WJ, Dameron TJ (1980) Untreated ruptures of the anterior cruciate ligament. A follow-up study. J Bone Jt Surg Am 62:696–705

    Article  Google Scholar 

  39. McDermott ID, Amis AA (2006) The consequences of meniscectomy. J Bone Jt Surg Br 88:1549–1556

    Article  CAS  Google Scholar 

  40. McDermott ID, Sharifi F, Bull AM, Gupte CM, Thomas RW, Amis AA (2004) An anatomical study of meniscal allograft sizing. Knee Surg Sports Traumatol Arthrosc 12:130–135

    Article  CAS  PubMed  Google Scholar 

  41. Meyer EG, Haut RC (2005) Excessive compression of the human tibio-femoral joint causes ACL rupture. J Biomech 38:2311–2316

    Article  PubMed  Google Scholar 

  42. Murshed KA, Cicekcibasi AE, Karabacakoglu A, Seker M, Ziylan T (2005) Distal femur morphometry: a gender and bilateral comparative study using magnetic resonance imaging. Surg Radiol Anat 27:108–112

    Article  PubMed  Google Scholar 

  43. Musahl V, Citak M, O’Loughlin PF, Choi D, Bedi A, Pearle AD (2010) The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 38:1591–1597

    Article  PubMed  Google Scholar 

  44. Neuman P, Englund M, Kostogiannis I, Friden T, Roos H, Dahlberg LE (2008) Prevalence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: a prospective cohort study. Am J Sports Med 36:1717–1725

    Article  PubMed  Google Scholar 

  45. Okazaki Y, Furumatsu T, Kodama Y, Kamatsuki Y, Okazaki Y, Hiranaka T, Takihira S, Tetsunaga T, Saiga K, Ozaki T (2019) Steep posterior slope and shallow concave shape of the medial tibial plateau are risk factors for medial meniscus posterior root tears. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-019-05590-4

    Article  PubMed  Google Scholar 

  46. Pagnano MW, Cushner FD, Scott WN (1998) Role of the posterior cruciate ligament in total knee arthroplasty. J Am Acad Orthop Surg 6:176–187

    Article  CAS  PubMed  Google Scholar 

  47. Papageorgiou CD, Gil JE, Kanamori A, Fenwick JA, Woo SL, Fu FH (2001) The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus. Am J Sports Med 29:226–231

    Article  CAS  PubMed  Google Scholar 

  48. Park JS, Nam DC, Kim DH, Kim HK, Hwang SC (2012) Measurement of knee morphometrics using MRI: a comparative study between ACL-injured and non-injured knees. Knee Surg Relat Res 24:180–185

    Article  PubMed  PubMed Central  Google Scholar 

  49. Poulsen E, Goncalves GH, Bricca A, Roos EM, Thorlund JB, Juhl CB (2019) Knee osteoarthritis risk is increased 4–6 fold after knee injury-a systematic review and meta-analysis. Br J Sports Med 53:1454–1463

    Article  PubMed  Google Scholar 

  50. Rahnemai-Azar AA, Abebe ES, Johnson P, Labrum J, Fu FH, Irrgang JJ, Samuelsson K, Musahl V (2017) Increased lateral tibial slope predicts high-grade rotatory knee laxity pre-operatively in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 25:1170–1176

    Article  PubMed  Google Scholar 

  51. Sanders TL, Pareek A, Kremers HM, Bryan AJ, Levy BA, Stuart MJ, Dahm DL, Krych AJ (2017) Long-term follow-up of isolated ACL tears treated without ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 25:493–500

    Article  PubMed  Google Scholar 

  52. Schillhammer CK, Werner FW, Scuderi MG, Cannizzaro JP (2012) Repair of lateral meniscus posterior horn detachment lesions: a biomechanical evaluation. Am J Sports Med 40:2604–2609

    Article  PubMed  Google Scholar 

  53. Shelbourne KD, Davis TJ, Klootwyk TE (1998) The relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears. A prospective study. Am J Sports Med 26:402–408

    Article  CAS  PubMed  Google Scholar 

  54. Shelburne KB, Kim HJ, Sterett WI, Pandy MG (2011) Effect of posterior tibial slope on knee biomechanics during functional activity. J Orthop Res 29:223–231

    Article  PubMed  Google Scholar 

  55. Shen X, Xiao J, Yang Y, Liu T, Chen S, Gao Z, Zuo J (2019) Multivariable analysis of anatomic risk factors for anterior cruciate ligament injury in active individuals. Arch Orthop Trauma Surg 139:1277–1285

    Article  PubMed  Google Scholar 

  56. Shoemaker SC, Markolf KL (1986) The role of the meniscus in the anterior-posterior stability of the loaded anterior cruciate-deficient knee. Effects of partial versus total excision. J Bone Jt Surg Am 68:71–79

    Article  CAS  Google Scholar 

  57. Shultz SJ, Schmitz RJ (2012) Tibial plateau geometry influences lower extremity biomechanics during landing. Am J Sports Med 40:2029–2036

    Article  PubMed  Google Scholar 

  58. Simon RA, Everhart JS, Nagaraja HN, Chaudhari AM (2010) A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech 43:1702–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Song GY, Liu X, Zhang H, Wang QQ, Zhang J, Li Y, Feng H (2016) Increased medial meniscal slope is associated with greater risk of ramp lesion in noncontact anterior cruciate ligament injury. Am J Sports Med 44:2039–2046

    Article  PubMed  Google Scholar 

  60. Song GY, Zhang H, Wang QQ, Zhang J, Li Y, Feng H (2016) Risk factors associated with grade 3 pivot shift after acute anterior cruciate ligament injuries. Am J Sports Med 44:362–369

    Article  PubMed  Google Scholar 

  61. Song GY, Zhang H, Zhang J, Liu X, Xue Z, Qian Y, Feng H (2018) Greater static anterior tibial subluxation of the lateral compartment after an acute anterior cruciate ligament injury is associated with an increased posterior tibial slope. Am J Sports Med 46:1617–1623

    Article  PubMed  Google Scholar 

  62. van Diek FM, Wolf MR, Murawski CD, van Eck CF, Fu FH (2014) Knee morphology and risk factors for developing an anterior cruciate ligament rupture: an MRI comparison between ACL-ruptured and non-injured knees. Knee Surg Sports Traumatol Arthrosc 22:987–994

    PubMed  Google Scholar 

  63. Van Eck CF, Martins CA, Kopf S, Lertwanich P, Fu FH, Tashman S (2011) Correlation between the 2-dimensional notch width and the 3-dimensional notch volume: a cadaveric study. Arthroscopy 27:207–212

    Article  PubMed  Google Scholar 

  64. van Eck CF, Martins CA, Lorenz SG, Fu FH, Smolinski P (2010) Assessment of correlation between knee notch width index and the three-dimensional notch volume. Knee Surg Sports Traumatol Arthrosc 18:1239–1244

    Article  PubMed  PubMed Central  Google Scholar 

  65. Van Rossom S, Wesseling M, Smith CR, Thelen DG, Vanwanseele B, Dieter VA, Jonkers I (2019) The influence of knee joint geometry and alignment on the tibiofemoral load distribution: a computational study. Knee 26:813–823

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang XH, Song DY, Dong X, Suguro T, Cheng CK (2019) Motion type and knee articular conformity influenced mid-flexion stability of a single radius knee prosthesis. Knee Surg Sports Traumatol Arthrosc 27:1595–1603

    Article  PubMed  Google Scholar 

  67. Whitney DC, Sturnick DR, Vacek PM, DeSarno MJ, Gardner-Morse M, Tourville TW, Smith HC, Slauterbeck JR, Johnson RJ, Shultz SJ, Hashemi J, Beynnon BD (2014) Relationship between the risk of suffering a first-time noncontact ACL injury and geometry of the femoral notch and ACL: a prospective cohort study with a nested case-control analysis. Am J Sports Med 42:1796–1805

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zeng F, Huang SJ, Zhou CK, Chen CS, Li SJ (2017) Study on the correlation between the tightness of cruciate ligament and meniscus injury based on MRI measurement. Chin J Clin Anat 35:628–632

    Google Scholar 

Download references

Funding

No funding was received in support of this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by WL, CL and BL. The first draft of the manuscript was written by WL and CL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chenglong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Zhujiang Hospital (2020-KY-008–01).

Informed consent

Not applicable. The patients could not be identified through the data collected in this retrospective study, thus the Ethics Committee of Zhujiang Hospital allowed exemption from informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Liang, J., Zeng, F. et al. Anatomic characteristics of the knee influence the risk of suffering an isolated meniscal injury and the risk factors differ between women and men. Knee Surg Sports Traumatol Arthrosc 29, 3751–3762 (2021). https://doi.org/10.1007/s00167-020-06396-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-020-06396-5

Keywords

Navigation