Skip to main content
Log in

Is the femoral lateral condyle’s bone morphology the trochlea of the ACL?

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to investigate the association of different osteoarticular femoral and tibial morphology and morphometric parameters with the risk of anterior cruciate ligament (ACL) rupture.

Methods

Thirty-six patients (29 male and 7 female) with an ACL rupture (<6 months) and 36 age and sex-matched controls were included. The anatomomorphological parameters and morphometrics of the distal epiphysis of the femur and proximal epiphysis of the tibia were measured through conventional lateral radiography of the knee.

Results

It was found statistically significant smaller heights of femur’s lateral condyle, AP distances of the tibial plateaus and smaller XY and WX distances, as well as, higher XY/AB and B/AB ratios (p < 0.05). In turn, women had smaller AP distances of the femur’s lateral condyle, AP distances of the femur’s diaphysis, AP distances of the tibial plateaus and heights of femur’s lateral condyle, as well as, higher values of XY/AB (Porto ratio) and B/AB ratios (p < 0.05).

Conclusions

Several femoral and tibial bone morphological parameters were identified as potential risk factors for sustaining an ACL injury. These parameters are clinically relevant to identify individuals with higher risk of ACL injury, decide between conservative or surgical treatment and identify individuals who may benefit from preventive neuromuscular programs.

Level of evidence

Case–control study, Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alentorn-Geli E, Pelfort X, Mingo F, Lizano-Díez X, Leal-Blanquet J, Torres-Claramunt R, Hinarejos P, Puig-Verdié L, Monllau JC (2015) An evaluation of the association between radiographic intercondylar notch narrowing and anterior cruciate ligament injury in men: the notch angle is a better parameter than notch width. Arthroscopy 31:2004–2013

    Article  PubMed  Google Scholar 

  2. Amis AA (2012) The functions of the fibre bundles of the anterior cruciate ligament in anterior drawer, rotational laxity and the pivot shift. Knee Surg Sports Traumatol Arthrosc 20:613–620

    Article  PubMed  Google Scholar 

  3. Andrade R, Vasta S, Sevivas N, Pereira R, Leal A, Papalia R, Pereira H, Espregueira-Mendes J (2016) Notch morphology is a risk factor for ACL injury: a systematic review and meta-analysis. J ISAKOS 1:70–81

    Article  Google Scholar 

  4. Beynnon BD, Hall JS, Sturnick DR, Desarno MJ, Gardner-Morse M, Tourville TW, Smith HC, Slauterbeck JR, Shultz SJ, Johnson RJ, Vacek PM (2014) Increased slope of the lateral tibial plateau subchondral bone is associated with greater risk of noncontact ACL injury in females but not in males: a prospective cohort study with a nested, matched case–control analysis. Am J Sports Med 42:1039–1048

    Article  PubMed  Google Scholar 

  5. Boden BP, Breit I, Sheehan FT (2009) Tibiofemoral alignment: contributing factors to noncontact anterior cruciate ligament injury. J Bone Joint Surg Am 91:2381–2389

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boden BP, Sheehan FT, Torg JS, Hewett TE (2010) Noncontact anterior cruciate ligament injuries: mechanisms and risk factors. J Am Acad Orthop Surg 18:520–527

    Article  PubMed  PubMed Central  Google Scholar 

  7. De Loes M, Dahlstedt L, Thomee R (2000) A 7-year study on risks and costs of knee injuries in male and female youth participants in 12 sports. Scand J Med Sci Sports 10:90–97

    Article  PubMed  Google Scholar 

  8. Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br 76:745–749

    CAS  PubMed  Google Scholar 

  9. Fernández-Jaén T, López-Alcorocho JM, Rodriguez-Iñigo E, Castellán F, Hernández JC, Guillén-García P (2015) The importance of the intercondylar notch in anterior cruciate ligament tears. Orthop J Sports Med 3:2325967115597882

    PubMed  PubMed Central  Google Scholar 

  10. Feucht MJ, Mauro CS, Brucker PU, Imhoff AB, Hinterwimmer S (2013) The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 21:134–145

    Article  PubMed  Google Scholar 

  11. Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32:376–382

    Article  PubMed  Google Scholar 

  12. Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC, Dabezies E, Beynnon BD (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38:54–62

    Article  PubMed  Google Scholar 

  13. Hashemi J, Mansouri H, Chandrashekar N, Slauterbeck JR, Hardy DM, Beynnon BD (2011) Age, sex, body anthropometry, and ACL size predict the structural properties of the human anterior cruciate ligament. J Orthop Res 29:993–1001

    Article  PubMed  Google Scholar 

  14. Hefti E, Müller W, Jakob R, Stäubli H-U (1993) Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc 1:226–234

    Article  CAS  PubMed  Google Scholar 

  15. Hewett TE, Myer GD, Ford KR (2006) Anterior cruciate ligament injuries in female athletes part 1, mechanisms and risk factors. Am J Sports Med 34:299–311

    Article  PubMed  Google Scholar 

  16. Hootman JM, Dick R, Agel J (2007) Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train 42:311

    PubMed  PubMed Central  Google Scholar 

  17. Iriuchishima T, Ryu K, Aizawa S, Fu FH (2015) Blumensaat’s line is not always straight: morphological variations of the lateral wall of the femoral intercondylar notch. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3579-7

    Google Scholar 

  18. Iriuchishima T, Ryu K, Aizawa S, Fu FH (2015) Proportional evaluation of anterior cruciate ligament footprint size and knee bony morphology. Knee Surg Sports Traumatol Arthrosc 23:3157–3162

    Article  PubMed  Google Scholar 

  19. Iriuchishima T, Ryu K, Aizawa S, Fu FH (2015) Size correlation between the tibial anterior cruciate ligament footprint and the tibia plateau. Knee Surg Sports Traumatol Arthrosc 23:1147–1152

    Article  PubMed  Google Scholar 

  20. Kujala U, Nelimarkka O, Koskinen S (1992) Relationship between the pivot shift and the configuration of the lateral tibial plateau. Arch Orthop Trauma Surg 111:228–229

    Article  CAS  PubMed  Google Scholar 

  21. Lyman S, Koulouvaris P, Sherman S, Do H, Mandl LA, Marx RG (2009) Epidemiology of anterior cruciate ligament reconstruction. J Bone Joint Surg Am 91:2321–2328

    Article  PubMed  Google Scholar 

  22. Lynch TS, Parker RD, Patel RM, Andrish JT, Spindler KP, Group M (2015) The impact of the multicenter orthopaedic outcomes network (MOON) research on anterior cruciate ligament reconstruction and orthopaedic practice. J Am Acad Orthop Surg 23:154–163

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mather RC, Koenig L, Kocher MS, Dall TM, Gallo P, Scott DJ, Bach BR, Spindler KP (2013) Societal and economic impact of anterior cruciate ligament tears. J Bone Joint Surg Am 95:1751–1759

    Article  PubMed  PubMed Central  Google Scholar 

  24. Musahl V, Ayeni OR, Citak M, Irrgang JJ, Pearle AD, Wickiewicz TL (2010) The influence of bony morphology on the magnitude of the pivot shift. Knee Surg Sports Traumatol Arthrosc 18:1232–1238

    Article  PubMed  Google Scholar 

  25. Nieves JW, Formica C, Ruffing J, Zion M, Garrett P, Lindsay R, Cosman F (2005) Males have larger skeletal size and bone mass than females, despite comparable body size. J Bone Miner Res 20:529–535

    Article  PubMed  Google Scholar 

  26. Pereira H, Fernandes M, Pereira R, Monteiro A, Oliveira J-M, Reis R-L, Pinheiro P, Espregueira-Mendes J (2013) Radiographic method to determine risk factors for ACL rupture in athletes based in bone morphology. Rev Chir Orthop Reparatrice Appar Mot 99:e4

    Google Scholar 

  27. Simon R, Everhart J, Nagaraja H, Chaudhari A (2010) A case–control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech 43:1702–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Diek FM, Wolf MR, Murawski CD, van Eck CF, Fu FH (2014) Knee morphology and risk factors for developing an anterior cruciate ligament rupture: an MRI comparison between ACL-ruptured and non-injured knees. Knee Surg Sports Traumatol Arthrosc 22:987–994

    PubMed  Google Scholar 

  29. Van Grinsven S, Van Cingel R, Holla C, Van Loon C (2010) Evidence-based rehabilitation following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 18:1128–1144

    Article  PubMed  Google Scholar 

  30. Voos JE, Suero EM, Citak M, Petrigliano FP, Bosscher MR, Citak M, Wickiewicz TL, Pearle AD (2012) Effect of tibial slope on the stability of the anterior cruciate ligament–deficient knee. Knee Surg Sports Traumatol Arthrosc 20:1626–1631

    Article  PubMed  Google Scholar 

  31. Vrooijink SH, Wolters F, Van Eck CF, Fu FH (2011) Measurements of knee morphometrics using MRI and arthroscopy: a comparative study between ACL-injured and non-injured subjects. Knee Surg Sports Traumatol Arthrosc 19:12–16

    Article  Google Scholar 

  32. Yoo JH, Lim BO, Ha M, Lee SW, Oh SJ, Lee YS, Kim JG (2010) A meta-analysis of the effect of neuromuscular training on the prevention of the anterior cruciate ligament injury in female athletes. Knee Surg Sports Traumatol Arthrosc 18:824–830

    Article  PubMed  Google Scholar 

  33. Zeng C, Gao S-G, Wei J, Yang T-B, Cheng L, Luo W, Tu M, Xie Q, Hu Z, Liu P-F (2013) The influence of the intercondylar notch dimensions on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 21:804–815

    Article  PubMed  Google Scholar 

  34. Zeng C, Yang T, Wu S, Gao S-G, Li H, Deng Z-H, Zhang Y, Lei G-H (2014) Is posterior tibial slope associated with noncontact anterior cruciate ligament injury? Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3382-x

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Espregueira-Mendes.

Ethics declarations

Human and animal rights statement

This article does not contain any studies with animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, M.S., Pereira, R., Andrade, R. et al. Is the femoral lateral condyle’s bone morphology the trochlea of the ACL?. Knee Surg Sports Traumatol Arthrosc 25, 207–214 (2017). https://doi.org/10.1007/s00167-016-4159-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4159-1

Keywords

Navigation