Skip to main content

Advertisement

Log in

Bone morphology and morphometry of the lateral femoral condyle is a risk factor for ACL injury

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to investigate the influence of the knee lateral compartment bony morphology and morphometry on risk of sustaining an anterior cruciate ligament (ACL) injury.

Methods

A total of 400 age and sex-matched patients (200 ACL-ruptured and 200 ACL-intact) were included. The lateral femoral and tibial bone morphology and morphometric parameters were measured on knee lateral radiographs, taken at 30° of knee flexion with overlapping of the femoral condyles. Radiographic measurements included: anteroposterior-flattened surface of the femur’s lateral condyle (XY); femur’s diaphysis anteroposterior distance (A); anteroposterior distance of the femur’s lateral condyle (B); height of the femur’s lateral condyle (C); anteroposterior distance of the tibial plateaus (AB); tibial slope. In addition, three morphological ratios were calculated: B/AB; B/XY; XY/AB (Porto ratio).

Results

Most of bone morphological parameters were different between genders (P < 0.05). ACL-ruptured female subjects showed statistical significant smaller condyle heights (C), smaller distances of the flattened surface of the distal femoral condyle (XY), smaller tibial plateau anteroposterior distances (AB), and higher XY/AB ratio (P < 0.05). ACL-ruptured male subjects had statistical significant smaller condyle height (C), anteroposterior distance of the femur’s lateral condyle (B), tibial plateau anteroposterior distances (AB), and tibial slope (P < 0.05). Multivariate logistic regression model showed that five morphological parameters (A, XW, XY, XZ, and AB) were significantly associated with ACL rupture (AUC = 0.967, P < 0.001). Calculated ratios (XY/AB; B/AB; B/XY) showed a significant accuracy in identifying individuals with ACL injury (P < 0.001).

Conclusions

The most important finding of this study was that the calculated ratios (XY/AB; B/AB; B/XY) showed a significant accuracy in identifying the individuals with and without an ACL injury. Within this line, a longer flat surface of the lateral femoral condyle or higher Porto ratio (XY/AB) is associated with a lower the risk of ACL injury. Moreover, when considering the combination of five primary bone morphology and morphometric parameters (A, XW, XY, XZ, and AB), the accuracy in identifying these individuals was excellent (AUC = 0.967). These findings may contribute to injury risk assessment, sports participation, and injury prevention counseling and surgical planning refining by identifying high-risk patients who would benefit from the addition of associated procedures to the anatomic ACL reconstruction aiming the improvement of knee stability and decrease the risk of further injuries.

Level of evidence

III, case–control study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. De Loes M, Dahlstedt L, Thomee R (2000) A 7-year study on risks and costs of knee injuries in male and female youth participants in 12 sports. Scand J Med Sci Sports 10:90–97

    Article  PubMed  Google Scholar 

  2. Mather RC, Koenig L, Kocher MS, Dall TM, Gallo P, Scott DJ et al (2013) Societal and economic impact of anterior cruciate ligament tears. J Bone Jt Surg Am 95:1751–1759

    Article  Google Scholar 

  3. Alentorn-Geli E, Myer GD, Silvers HJ, Samitier G, Romero D, Lázaro-Haro C et al (2009) Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: mechanisms of injury and underlying risk factors. Knee Surg Sports Traumatol Arthrosc 17:705–729

    Article  PubMed  Google Scholar 

  4. Hewett TE, Myer GD, Ford KR (2006) Anterior cruciate ligament injuries in female athletes part 1, mechanisms and risk factors. Am J Sports Med 34:299–311

    Article  PubMed  Google Scholar 

  5. Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, Demaio M et al (2006) Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med 34:1512–1532

    Article  PubMed  Google Scholar 

  6. Andrade R, Vasta S, Sevivas N, Pereira R, Leal A, Papalia R et al (2016) Notch morphology is a risk factor for ACL injury: a systematic review and meta-analysis. J ISAKOS 1:70–81

    Article  Google Scholar 

  7. Fernandes MS, Pereira R, Andrade R, Vasta S, Pereira H, Pinheiro JP et al (2016) Is the femoral lateral condyle’s bone morphology the trochlea of the ACL? Knee Surg Sports Traumatol Arthrosc 25:207–214

    Article  PubMed  Google Scholar 

  8. Musahl V, Ayeni OR, Citak M, Irrgang JJ, Pearle AD, Wickiewicz TL (2010) The influence of bony morphology on the magnitude of the pivot shift. Knee Surg Sports Traumatol Arthrosc 18:1232–1238

    Article  PubMed  Google Scholar 

  9. Rahnemai-Azar AA, Abebe ES, Johnson P, Labrum J, Fu FH, Irrgang JJ et al (2017) Increased lateral tibial slope predicts high-grade rotatory knee laxity pre-operatively in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 25:1170–1176

    Article  PubMed  Google Scholar 

  10. Stijak L, Herzog RF, Schai P (2008) Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? Knee Surg Sports Traumatol Arthrosc 16:112–117

    Article  PubMed  Google Scholar 

  11. Dejour D, Saffarini M, Demey G, Baverel L (2015) Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surg Sports Traumatol Arthrosc 23:2846–2852

    Article  PubMed  Google Scholar 

  12. Sonnery-Cottet B, Mogos S, Thaunat M, Archbold P, Fayard J-M, Freychet B et al (2014) Proximal tibial anterior closing wedge osteotomy in repeat revision of anterior cruciate ligament reconstruction. Am J Sports Med 42:1873–1880

    Article  PubMed  Google Scholar 

  13. Arun G, Kumaraswamy V, Rajan D, Vinodh K, Singh AK, Kumar P et al (2016) Long-term follow-up of single-stage anterior cruciate ligament reconstruction and high tibial osteotomy and its relation with posterior tibial slope. Arch Orthop Trauma Surg 136:505–511

    Article  PubMed  CAS  Google Scholar 

  14. Li Y, Hong L, Feng H, Wang Q, Zhang J, Song G et al (2014) Posterior tibial slope influences static anterior tibial translation in anterior cruciate ligament reconstruction: a minimum 2-year follow-up study. Am J Sports Med 42:927–933

    Article  PubMed  Google Scholar 

  15. Digiacomo JE, Palmieri-Smith RM, Redmann JA III, Lepley LK (2017) Examination of knee morphology after secondary ipsilateral ACL Injury compared to those that have not reinjured: a preliminary study. J Sport Rehabil. https://doi.org/10.1123/jsr.2016-0093

    Article  Google Scholar 

  16. Andrade R, Pereira R, Leal A, Vasta S, Sevivas N, Sarmento A et al. (2017) Lateral tibiofemoral morphology is associated with knee global rotation in ACL-ruptured patients: a correlational study between bone morphology and knee rotatory laxity. Paper presented at the 11th Biennial ISAKOS Congress, Shanghai, 4–8 June 2017

  17. Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC et al (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38:54–62

    Article  PubMed  Google Scholar 

  18. Fernández-Jaén T, López-Alcorocho JM, Rodriguez-Iñigo E, Castellán F, Hernández JC, Guillén-García P (2015) The importance of the intercondylar notch in anterior cruciate ligament tears. Orthop J Sports Med 3:2325967115597882

    PubMed  PubMed Central  Google Scholar 

  19. Park JS, Nam DC, Kim DH, Kim HK, Hwang SC (2012) Measurement of knee morphometrics using MRI: a comparative study between ACL-injured and non-injured knees. Knee Surg Relat Res 24:180–185

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chung SC-y, Chan W-l, Wong S-h (2011) Lower limb alignment in anterior cruciate ligament–deficient versus–intact knees. J Orthop Surg 19:303–308

    Article  Google Scholar 

  21. Şenişik S, Özgürbüz C, Ergün M, Yüksel O, Taskiran E, İşlegen Ç et al (2011) Posterior tibial slope as a risk factor for anterior cruciate ligament rupture in soccer players. J Sports Sci Med 10:763–767

    PubMed  PubMed Central  Google Scholar 

  22. Sonnery-Cottet B, Archbold P, Cucurulo T, Fayard J-M, Bortolletto J, Thaunat M et al (2011) The influence of the tibial slope and the size of the intercondylar notch on rupture of the anterior cruciate ligament. J Bone Jt Surg Br 93:1475–1478

    Article  CAS  Google Scholar 

  23. Todd MS, Lalliss S, Garcia ES, DeBerardino TM, Cameron KL (2010) The relationship between posterior tibial slope and anterior cruciate ligament injuries. Am J Sports Med 38:63–67

    Article  PubMed  Google Scholar 

  24. Zeng C, Yang T, Wu S, Gao S-g, Li H, Deng Z-h et al (2014) Is posterior tibial slope associated with noncontact anterior cruciate ligament injury? Knee Surg Sports Traumatol Arthrosc 24:830–837

    Article  PubMed  Google Scholar 

  25. Blanke F, Kiapour AM, Haenle M, Fischer J, Majewski M, Vogt S et al (2016) Risk of noncontact anterior cruciate ligament injuries is not associated with slope and concavity of the tibial plateau in recreational alpine skiers: a magnetic resonance imaging–based case–control study of 121 patients. Am J Sports Med 44:1508–1514

    Article  PubMed  Google Scholar 

  26. Ha T, Li K, Beaulieu C, Bergman G, Ch’en I, Eller D et al (1998) Anterior cruciate ligament injury: fast spin-echo MR imaging with arthroscopic correlation in 217 examinations. AJR Am J Roentgenol 170:1215–1219

    Article  PubMed  CAS  Google Scholar 

  27. Hohmann E, Bryant A, Reaburn P, Tetsworth K (2010) Does posterior tibial slope influence knee functionality in the anterior cruciate ligament-deficient and anterior cruciate ligament-reconstructed knee? Arthroscopy 26:1496–1502

    Article  PubMed  Google Scholar 

  28. Rahnemai-Azar AA, Yaseen Z, van Eck CF, Irrgang JJ, Fu FH, Musahl V (2016) Increased lateral tibial plateau slope predisposes male college football players to anterior cruciate ligament injury. J Bone Jt Surg Am 98:1001–1006

    Article  Google Scholar 

  29. Webb JM, Salmon LJ, Leclerc E, Pinczewski LA, Roe JP (2013) Posterior tibial slope and further anterior cruciate ligament injuries in the anterior cruciate ligament-reconstructed patient. Am J Sports Med 41:2800–2804

    Article  PubMed  Google Scholar 

  30. Feucht MJ, Mauro CS, Brucker PU, Imhoff AB, Hinterwimmer S (2013) The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 21:134–145

    Article  PubMed  Google Scholar 

  31. Magnussen RA, Dahm DL, Neyret P (2014) Osteotomy for slope correction following failed ACL reconstruction. In: Marx R (ed) Revision ACL reconstruction. Springer, New York, pp 221–226

    Chapter  Google Scholar 

  32. Cantin O, Magnussen RA, Corbi F, Servien E, Neyret P, Lustig S (2015) The role of high tibial osteotomy in the treatment of knee laxity: a comprehensive review. Knee Surg Sports Traumatol Arthrosc 23:3026–3037

    Article  PubMed  CAS  Google Scholar 

  33. Hofbauer M, Thorhauer ED, Abebe E, Bey M, Tashman S (2014) Altered tibiofemoral kinematics in the affected knee and compensatory changes in the contralateral knee after anterior cruciate ligament reconstruction. Am J Sports Med 42:2715–2721

    Article  PubMed  Google Scholar 

  34. Kujala U, Nelimarkka O, Koskinen S (1992) Relationship between the pivot shift and the configuration of the lateral tibial plateau. Arch Orthop Trauma Surg 111:228–229

    Article  PubMed  CAS  Google Scholar 

  35. Simon R, Everhart J, Nagaraja H, Chaudhari A (2010) A case–control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech 43:1702–1707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Voos JE, Suero EM, Citak M, Petrigliano FP, Bosscher MR, Citak M et al (2012) Effect of tibial slope on the stability of the anterior cruciate ligament–deficient knee. Knee Surg Sports Traumatol Arthrosc 20:1626–1631

    Article  PubMed  Google Scholar 

  37. Wahl CJ, Westermann RW, Blaisdell GY, Cizik AM (2012) An association of lateral knee sagittal anatomic factors with non-contact ACL injury: sex or geometry? J Bone Jt Surg Am 94:217–226

    Article  Google Scholar 

  38. Guzzini M, Mazza D, Fabbri M, Lanzetti R, Redler A, Iorio C et al (2016) Extra-articular tenodesis combined with an anterior cruciate ligament reconstruction in acute anterior cruciate ligament tear in elite female football players. Int Orthop 40:2091–2096

    Article  PubMed  Google Scholar 

  39. Hart HF, Culvenor AG, Collins NJ, Ackland DC, Cowan SM, Machotka Z et al (2016) Knee kinematics and joint moments during gait following anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Br J Sports Med 50:597–612

    Article  PubMed  Google Scholar 

  40. Titchenal MR, Chu CR, Erhart-Hledik JC, Andriacchi TP (2017) Early changes in knee center of rotation during walking after anterior cruciate ligament reconstruction correlate with later changes in patient-reported outcomes. Am J Sports Med 45:915–921

    Article  PubMed  Google Scholar 

  41. Williams A, Ball S, Stephen J, White N, Jones M, Amis A (2017) The scientific rationale for lateral tenodesis augmentation of intra-articular ACL reconstruction using a modified ‘Lemaire’procedure. Knee Surg Sports Traumatol Arthrosc 25:1339–1344

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Espregueira-Mendes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

The authors declare that there was no funding of this study.

Ethical approval

This was a retrospective study and a ethics committee approval was not required.

Human and animal rights statement

This article does not contain any studies with animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasta, S., Andrade, R., Pereira, R. et al. Bone morphology and morphometry of the lateral femoral condyle is a risk factor for ACL injury. Knee Surg Sports Traumatol Arthrosc 26, 2817–2825 (2018). https://doi.org/10.1007/s00167-017-4761-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-017-4761-x

Keywords

Navigation