Skip to main content

Advertisement

Log in

Femoral interference screw fixation of hamstring and quadriceps tendons for ACL reconstruction

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

This cadaveric study compares the biomechanical properties of femoral graft fixation in ACL reconstruction of either quadriceps or hamstring tendon grafts with four different interference screws. The hypothesis was that quadriceps tendon grafts provide at least equal results concerning gap formation during cyclic loading and ultimate failure load compared to hamstring tendon grafts with four different interference screws.

Methods

Eighty porcine femora underwent interference screw fixation of human tendon grafts for ACL reconstruction. Either quadriceps (Q) or hamstring (H) tendon grafts and four different bioabsorbable interference (Wolf (W), Storz (S), Mitek (M), Arthrex (A)) screws were used, resulting in 8 groups with 10 specimens per groups (WQ, WH, SQ, SH, MQ, MH, AQ, AH). Biomechanical analysis included pretensioning the constructs with 60 N for 30 s, then cyclic loading of 500 cycles between 60 and 250 N at 1 Hz in a servohydraulic testing machine, with measurement of elongation and stiffness including video measurements. After this, ultimate failure load and failure mode analysis were performed.

Results

No statistically significant difference could be noted between the groups regarding gap formation during cyclic loading [Cycles 21–500 (mm): WQ 3.6 ± 0.8, WH 3.9 ± 1.4, SQ 3.6 ± 0.8, SH 3.3 ± 1.5, MQ 4.3 ± 0.8, MH 4.6 ± 1.0, AQ 4.8 ± 0.8, AH 4.3 ± 1.5, n.s.], stiffness during cyclic loading [Cycles 21–500 (N/mm): WQ 72.9 ± 16.9, WH 71.6 ± 20.7, SQ 69.5 ± 23.9, SH 77.4 ± 25.1, MQ 59.6 ± 11.2, MH 48.4 ± 15.4, AQ 48.8 ± 12.7, AH 51.9 ± 22.2, n.s.], and ultimate failure load [(N): WQ 474.4 ± 88.0, WH 579.3 ± 124.2, SQ 493.9 ± 105.2, SH 576.0 ± 90.4, MQ 478.6 ± 59.0, MH 543.9 ± 119.7, AQ 480.2 ± 93.8, AH 497.8 ± 74.2, n.s.].

Conclusions

Quadriceps tendon grafts yield comparable biomechanical results for femoral interference screw fixation in ACL reconstruction compared to hamstring tendon grafts. From a clinical perspective, quadriceps tendon grafts should therefore be considered as a good option in ACL reconstruction in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Armour T, Forwell L, Litchfield R, Kirkley A, Amendola N, Fowler PJ (2004) Isokinetic evaluation of internal/external tibial rotation strength after the use of hamstring tendons for anterior cruciate ligament reconstruction. Am J Sports Med 32(7):1639–1643

    Article  PubMed  Google Scholar 

  2. Brand J Jr, Hamilton D, Selby J, Pienkowski D, Caborn DN, Johnson DL (2000) Biomechanical comparison of quadriceps tendon fixation with patellar tendon bone plug interference fixation in cruciate ligament reconstruction. Arthroscopy 16(8):805–812

    Article  PubMed  Google Scholar 

  3. Brand J Jr, Weiler A, Caborn DN, Brown CH Jr, Johnson DL (2000) Graft fixation in cruciate ligament reconstruction. Am J Sports Med 28(5):761–774

    Article  PubMed  Google Scholar 

  4. Buelow JU, Siebold R, Ellermann A (2002) A prospective evaluation of tunnel enlargement in anterior cruciate ligament reconstruction with hamstrings: extracortical versus anatomical fixation. Knee Surg Sports Traumatol Arthrosc 10(2):80–85

    Article  PubMed  Google Scholar 

  5. Caborn DN, Coen M, Neef R, Hamilton D, Nyland J, Johnson DL (1998) Quadrupled semitendinosus-gracilis autograft fixation in the femoral tunnel: a comparison between a metal and a bioabsorbable interference screw. Arthroscopy 14(3):241–245

    Article  CAS  PubMed  Google Scholar 

  6. Ettinger M, Haasper C, Hankemeier S, Hurschler C, Breitmeier D, Krettek C, Jagodzinski M (2011) Biomechanical characterization of double-bundle femoral press-fit fixation techniques. Knee Surg Sports Traumatol Arthrosc 19(3):363–371

    Article  CAS  PubMed  Google Scholar 

  7. Freedman KB, D’Amato MJ, Nedeff DD, Kaz A, Bach BR Jr (2003) Arthroscopic anterior cruciate ligament reconstruction: a metaanalysis comparing patellar tendon and hamstring tendon autografts. Am J Sports Med 31(1):2–11

    PubMed  Google Scholar 

  8. Fulkerson JP, Langeland R (1995) An alternative cruciate reconstruction graft: the central quadriceps tendon. Arthroscopy 11(2):252–254

    Article  CAS  PubMed  Google Scholar 

  9. Garofalo R, Djahangiri A, Siegrist O (2006) Revision anterior cruciate ligament reconstruction with quadriceps tendon-patellar bone autograft. Arthroscopy 22(2):205–214

    Article  PubMed  Google Scholar 

  10. Garrick JG (2000) Reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am 82(8):1202–1203

    Article  PubMed  Google Scholar 

  11. Gifstad T, Drogset JO, Grontvedt T, Hortemo GS (2014) Femoral fixation of hamstring tendon grafts in ACL reconstructions: the 2-year follow-up results of a prospective randomized controlled study. Knee Surg Sports Traumatol Arthrosc 22(9):2153–2162

    Article  PubMed  Google Scholar 

  12. Gorschewsky O, Klakow A, Putz A, Mahn H, Neumann W (2007) Clinical comparison of the autologous quadriceps tendon (BQT) and the autologous patella tendon (BPTB) for the reconstruction of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 15(11):1284–1292

    Article  CAS  PubMed  Google Scholar 

  13. Hamner DL, Brown CH Jr, Steiner ME, Hecker AT, Hayes WC (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg Am 81(4):549–557

    Article  CAS  PubMed  Google Scholar 

  14. Ho WP, Lee CH, Huang CH, Chen CH, Chuang TY (2014) Clinical results of hamstring autografts in anterior cruciate ligament reconstruction: a comparison of femoral knot/press-fit fixation and interference screw fixation. Arthroscopy 30(7):823–832

    Article  PubMed  Google Scholar 

  15. Hoher J, Livesay GA, Ma CB, Withrow JD, Fu FH, Woo SL (1999) Hamstring graft motion in the femoral bone tunnel when using titanium button/polyester tape fixation. Knee Surg Sports Traumatol Arthrosc 7(4):215–219

    Article  CAS  PubMed  Google Scholar 

  16. Hoher J, Scheffler SU, Withrow JD, Livesay GA, Debski RE, Fu FH, Woo SL (2000) Mechanical behavior of two hamstring graft constructs for reconstruction of the anterior cruciate ligament. J Orthop Res 18(3):456–461

    Article  CAS  PubMed  Google Scholar 

  17. Hunt P, Unterhauser FN, Strobel MJ, Weiler A (2005) Development of a perforated biodegradable interference screw. Arthroscopy 21(3):258–265

    Article  PubMed  Google Scholar 

  18. Jagodzinski M, Behfar V, Hurschler C, Albrecht K, Krettek C, Bosch U (2004) Femoral press-fit fixation of the hamstring tendons for anterior cruciate ligament reconstruction. Am J Sports Med 32(7):1723–1730

    Article  PubMed  Google Scholar 

  19. Jorgensen U, Thomsen HS (2000) Behavior of the graft within the bone tunnels following anterior cruciate ligament reconstruction, studied by cinematic magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 8(1):32–35

    Article  CAS  PubMed  Google Scholar 

  20. Kartus J, Movin T, Karlsson J (2001) Donor-site morbidity and anterior knee problems after anterior cruciate ligament reconstruction using autografts. Arthroscopy 17(9):971–980

    Article  CAS  PubMed  Google Scholar 

  21. Kim D, Asai S, Moon CW, Hwang SC, Lee S, Keklikci K, Linde-Rosen M, Smolinski P, Fu FH (2015) Biomechanical evaluation of anatomic single- and double-bundle anterior cruciate ligament reconstruction techniques using the quadriceps tendon. Knee Surg Sports Traumatol Arthrosc 23(3):687–695

    Article  PubMed  Google Scholar 

  22. Kitamura N, Yasuda K, Yamanaka M, Tohyama H (2003) Biomechanical comparisons of three posterior cruciate ligament reconstruction procedures with load-controlled and displacement-controlled cyclic tests. Am J Sports Med 31(6):907–914

    PubMed  Google Scholar 

  23. Kousa P, Jarvinen TL, Vihavainen M, Kannus P, Jarvinen M (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: femoral site. Am J Sports Med 31(2):174–181

    PubMed  Google Scholar 

  24. Kousa P, Jarvinen TL, Vihavainen M, Kannus P, Jarvinen M (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site. Am J Sports Med 31(2):182–188

    PubMed  Google Scholar 

  25. Maletis GB, Cameron SL, Tengan JJ, Burchette RJ (2007) A prospective randomized study of anterior cruciate ligament reconstruction: a comparison of patellar tendon and quadruple-strand semitendinosus/gracilis tendons fixed with bioabsorbable interference screws. Am J Sports Med 35(3):384–394

    Article  PubMed  Google Scholar 

  26. Manjubala I, Sastry TP, Kumar RV (2005) Bone in-growth induced by biphasic calcium phosphate ceramic in femoral defect of dogs. J Biomater Appl 19(4):341–360

    Article  CAS  PubMed  Google Scholar 

  27. Martinek V, Seil R, Lattermann C, Watkins SC, Fu FH (2001) The fate of the poly-l-lactic acid interference screw after anterior cruciate ligament reconstruction. Arthroscopy 17(1):73–76

    Article  CAS  PubMed  Google Scholar 

  28. Mermerkaya MU, Atay OA, Kaymaz B, Bekmez S, Karaaslan F, Doral MN (2015) Anterior cruciate ligament reconstruction using a hamstring graft: a retrospective comparison of tunnel widening upon use of two different femoral fixation methods. Knee Surg Sports Traumatol Arthrosc 23(8):2283–2291

    Article  PubMed  Google Scholar 

  29. Monaco E, Labianca L, Speranza A, Agro AM, Camillieri G, D’Arrigo C, Ferretti A (2010) Biomechanical evaluation of different anterior cruciate ligament fixation techniques for hamstring graft. J Orthop Sci 15(1):125–131

    Article  CAS  PubMed  Google Scholar 

  30. Mulford JS, Hutchinson SE, Hang JR (2013) Outcomes for primary anterior cruciate reconstruction with the quadriceps autograft: a systematic review. Knee Surg Sports Traumatol Arthrosc 21(8):1882–1888

    Article  PubMed  Google Scholar 

  31. Nagarkatti DG, McKeon BP, Donahue BS, Fulkerson JP (2001) Mechanical evaluation of a soft tissue interference screw in free tendon anterior cruciate ligament graft fixation. Am J Sports Med 29(1):67–71

    CAS  PubMed  Google Scholar 

  32. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66(3):344–352

    Article  CAS  PubMed  Google Scholar 

  33. Prado M, Martin-Castilla B, Espejo-Reina A, Serrano-Fernandez JM, Perez-Blanca A, Ezquerro F (2013) Close-looped graft suturing improves mechanical properties of interference screw fixation in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 21(2):476–484

    Article  PubMed  Google Scholar 

  34. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF (1993) Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am 75(12):1795–1803

    Article  CAS  PubMed  Google Scholar 

  35. Schindler OS (2012) Surgery for anterior cruciate ligament deficiency: a historical perspective. Knee Surg Sports Traumatol Arthrosc 20(1):5–47

    Article  PubMed  Google Scholar 

  36. Shani RH, Umpierez E, Nasert M, Hiza EA, Xerogeanes J (2015) Biomechanical comparison of quadriceps and patellar tendon grafts in anterior cruciate ligament reconstruction. Arthroscopy. doi:10.1016/j.arthro.2015.06.051

    PubMed  Google Scholar 

  37. Stahelin AC, Weiler A, Rufenacht H, Hoffmann R, Geissmann A, Feinstein R (1997) Clinical degradation and biocompatibility of different bioabsorbable interference screws: a report of six cases. Arthroscopy 13(2):238–244

    Article  CAS  PubMed  Google Scholar 

  38. Staubli HU, Schatzmann L, Brunner P, Rincon L, Nolte LP (1996) Quadriceps tendon and patellar ligament: cryosectional anatomy and structural properties in young adults. Knee Surg Sports Traumatol Arthrosc 4(2):100–110

    Article  CAS  PubMed  Google Scholar 

  39. Steenlage E, Brand JC Jr, Johnson DL, Caborn DN (2002) Correlation of bone tunnel diameter with quadrupled hamstring graft fixation strength using a biodegradable interference screw. Arthroscopy 18(8):901–907

    Article  PubMed  Google Scholar 

  40. Tomita F, Yasuda K, Mikami S, Sakai T, Yamazaki S, Tohyama H (2001) Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy 17(5):461–476

    Article  CAS  PubMed  Google Scholar 

  41. Trump M, Palathinkal DM, Beaupre L, Otto D, Leung P, Amirfazli A (2011) In vitro biomechanical testing of anterior cruciate ligament reconstruction: traditional versus physiologically relevant load analysis. Knee 18(3):193–201

    Article  PubMed  Google Scholar 

  42. Weiler A, Hoffmann RF, Bail HJ, Rehm O, Sudkamp NP (2002) Tendon healing in a bone tunnel. Part II: histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 18(2):124–135

    Article  PubMed  Google Scholar 

  43. Weiler A, Hoffmann RF, Siepe CJ, Kolbeck SF, Sudkamp NP (2000) The influence of screw geometry on hamstring tendon interference fit fixation. Am J Sports Med 28(3):356–359

    CAS  PubMed  Google Scholar 

  44. Weiler A, Hoffmann RF, Stahelin AC, Helling HJ, Sudkamp NP (2000) Biodegradable implants in sports medicine: the biological base. Arthroscopy 16(3):305–321

    Article  CAS  PubMed  Google Scholar 

  45. Weiler A, Peine R, Pashmineh-Azar A, Abel C, Sudkamp NP, Hoffmann RF (2002) Tendon healing in a bone tunnel. Part I: biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 18(2):113–123

    Article  PubMed  Google Scholar 

  46. Weiler A, Richter M, Schmidmaier G, Kandziora F, Sudkamp NP (2001) The EndoPearl device increases fixation strength and eliminates construct slippage of hamstring tendon grafts with interference screw fixation. Arthroscopy 17(4):353–359

    Article  CAS  PubMed  Google Scholar 

  47. Weiler A, Scheffler S, Hoher J (2002) Transplant selection for primary replacement of the anterior cruciate ligament. Orthopade 31(8):731–740

    Article  CAS  PubMed  Google Scholar 

  48. West RV, Harner CD (2005) Graft selection in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 13(3):197–207

    Article  PubMed  Google Scholar 

  49. Yasuda K, Tsujino J, Ohkoshi Y, Tanabe Y, Kaneda K (1995) Graft site morbidity with autogenous semitendinosus and gracilis tendons. Am J Sports Med 23(6):706–714

    Article  CAS  PubMed  Google Scholar 

  50. Yasuda K, Tsujino J, Tanabe Y, Kaneda K (1997) Effects of initial graft tension on clinical outcome after anterior cruciate ligament reconstruction. Autogenous doubled hamstring tendons connected in series with polyester tapes. Am J Sports Med 25(1):99–106

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Petri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ettinger, M., Werner-Lebeda, T., Calliess, T. et al. Femoral interference screw fixation of hamstring and quadriceps tendons for ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 25, 1241–1248 (2017). https://doi.org/10.1007/s00167-016-4001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4001-9

Keywords

Navigation