Skip to main content
Log in

The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To evaluate and quantify the effect of the tibial slope on the postoperative maximal knee flexion and stability in the posterior-stabilized total knee arthroplasty (TKA).

Methods

Fifty-six patients (65 knees) who had undergone TKA with the posterior-stabilized prostheses were divided into the following 3 groups according to the measured tibial slopes: Group 1: ≤4°, Group 2: 4°–7° and Group 3: >7°. The preoperative range of the motion, the change in the posterior condylar offset, the elevation of the joint line, the postoperative tibiofemoral angle and the preoperative and postoperative Hospital for Special Surgery (HSS) scores were recorded. The tibial anteroposterior translation was measured using the Kneelax 3 Arthrometer at both the 30° and the 90° flexion angles.

Results

The mean values of the postoperative maximal knee flexion were 101° (SD 5), 106° (SD 5) and 113° (SD 9) in Groups 1, 2 and 3, respectively. A significant difference was found in the postoperative maximal flexion between the 3 groups (P < 0.001). However, no significant differences were found between the 3 groups in the postoperative HSS scores, the changes in the posterior condylar offset, the elevation of the joint line or the tibial anteroposterior translation at either the 30° or the 90° flexion angles. A 1° increase in the tibial slope resulted in a 1.8° flexion increment (r = 1.8, R 2 = 0.463, P < 0.001).

Conclusion

An increase in the posterior tibial slope can significantly increase the postoperative maximal knee flexion. The tibial slope with an appropriate flexion and extension gap balance during the operation does not affect the joint stability.

Level of evidence

Retrospective comparative study, Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akagi M, Ueo T, Matsusue Y, Akiyama H, Nakamura T (1997) Improved range of flexion after total knee arthroplasty. Bull Hosp Jt Dis 56:225–232

    PubMed  CAS  Google Scholar 

  2. Banks SA, Harrman MK, Hodge WA (2002) Mechanism of anterior impingement damage in total knee arthroplasty. J Bone Joint Surg Am 84-A:37–42

    PubMed  Google Scholar 

  3. Banks S, Bellemans J, Nozaki H, Whiteside L, Harman M, Hodge A (2003) Knee motions during maximum flexion in fixed and mobile bearing arthroplasties. Clin Orthop Relat Res 410:131–138

    Article  PubMed  Google Scholar 

  4. Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A (2002) Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Joint Surg Br 84:50–53

    Article  PubMed  CAS  Google Scholar 

  5. Bellemans J, Robijins F, Duerinckx J, Banks S, Vandenneucker H (2005) The influence of tibial slope on maximal flexion after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 13:193–196

    Article  PubMed  CAS  Google Scholar 

  6. Bizzini M, Gorelick M, Munzinger U et al (2006) Joint laxity and isokinetic thigh muscle strength characteristics after anterior cruciate ligament reconstruction: bone patellar tendon bone versus quadripled hamstring autografts. Clin J Sport Med 16:4–9

    Article  PubMed  Google Scholar 

  7. Callaghan JJ, O’rourke MR, Goetz DD, Schmalzried TP, Campbell PA, Johnston RC (2002) Tibial post impingement in posterior-stabilized total knee arthroplasty. Clin Orthop Relat Res 404:83–88

    Article  PubMed  Google Scholar 

  8. Catani F, Fantozzi S, Ensini A, Leardini A, Moschella D, Giannini S (2006) Influence of tibial component posterior slope on in vivo knee kinematics in fixed-bearing total knee arthroplasty. J Orthop Res 24:581–587

    Article  PubMed  CAS  Google Scholar 

  9. Chandran N, Amirouche F, Gonzalez MH, Hilton KM, Barmada R, Goldstein W (2009) Optimisation of the posterior-stabilized tibial post for greater femoral roll-back after total knee arthroplasty: a finite element analysis. Int Orthop 33:687–693

    Article  PubMed  Google Scholar 

  10. Chaudhary R, Beaupr’e LA, Johnston DWC (2008) Knee range of motion during the first two years after use of posterior cruciate-stabilizing or posterior cruciate-retaining total knee prostheses: a randomized clinical trial. J Bone Joint Surg Am 90:2579–2586

    Article  PubMed  CAS  Google Scholar 

  11. Dennis DA, Komistek RD, Mahfouz MR (2003) In vivo fluoroscopic analysis of fixed-bearing total knee replacements. Clin Orthop Relat Res 410:114–130

    Article  PubMed  Google Scholar 

  12. Dennis DA, Komistek RD, Scuderi GR, Zingde S (2007) Factors affecting flexion after total knee arthroplasty. Clin Orthop Relat Res 464:53–60

    PubMed  Google Scholar 

  13. Ewald FC (1989) The knee society total knee arthroplasty roentgenographic evaluation and scoring system. Clin Orthop Relat Res 248:9–12

    PubMed  Google Scholar 

  14. Furman BD, Lipman J, Kligman M, Wright TM, Haas SB (2008) Tibial post wear in posterior-stabilized knee replacements is design-dependent. Clin Orthop Relat Res 466:2650–2655

    Article  PubMed  Google Scholar 

  15. Gogia PP, Braatz JH, Rose SJ, Norton BJ (1987) Reliability and validity of goniometric measurements at the knee. Phys Ther 67:192–195

    PubMed  CAS  Google Scholar 

  16. Hamai S, Miura H, Higaki H, Shimoto T, Matsuda S, Iwamoto Y (2008) Evaluation of impingement of the anterior tibial post during gait in a posteriorly-stabilised total knee replacement. J Bone Joint Surg Br 90:1180–1185

    PubMed  CAS  Google Scholar 

  17. Hamai S, Miura H, Matsuda S, Shimoto T, Higaki H, Iwamoto Y (2010) Contact stress at the anterior aspect of the tibial post in posterior-stabilized total knee replacement. J Bone Joint Surg Am 92:1765–1773

    Article  PubMed  Google Scholar 

  18. Hofmann AA, Bcchus KN, Ronald WB (1991) Effect of the tibial cut on subsidence following total knee arthroplasty. Clin Orthop Relat Res 269:63–69

    PubMed  Google Scholar 

  19. Huang CH, Liau JJ, Huang CH, Cheng CK (2007) Stress analysis of the anterior tibial post in posterior-stabilized knee prostheses. J Orthop Res 25:442–449

    Article  PubMed  Google Scholar 

  20. Kansara D, Markel DC (2006) The effect of posterior tibial slope on range of motion after total knee arthroplasty. J Arthroplasty 21:809–813

    Article  PubMed  Google Scholar 

  21. Kim JM, Moon MS (1995) Squatting following total knee arthroplasty. Clin Orthop Relat Res 313:177–181

    PubMed  Google Scholar 

  22. Kim YH, Sohn KS, Kim JS (2005) Range of motion of standard and high flexion stabilized total knee prostheses: a prospective, randomized study. J Bone Joint Surg Am 87:1470–1475

    Article  PubMed  Google Scholar 

  23. Kuroyanagi Y, Mu S, Hamai S, Robb WJ, Banks SA (2012) In vivo knee kinematics during stair and deep flexion activities in patients with bicruciate substituting total knee arthroplasty. J Arthroplasty 27:122–128

    Article  PubMed  Google Scholar 

  24. Li G, Papannagari R, Most E, Park SE, Johnson T, Tanamal L, Rubash HE (2005) Anterior tibial post impingement in a posterior-stabilized total knee arthroplasty. J Orthop Res 23:536–541

    Article  PubMed  Google Scholar 

  25. Malviya A, Lingard EA, Weir DJ, Deehan DJ (2009) Predicting range of movement after knee replacement: the importance of posterior condylar offset and tibial slope. Knee Surg Sports Traumatol Arthrosc 17:491–498

    Article  PubMed  Google Scholar 

  26. Massin P, Gournay A (2006) Optimization of the posterior condylar offset, tibial slope, and condylar roll-back in total knee arthroplasty. J Arthroplasty 21:889–896

    Article  PubMed  Google Scholar 

  27. McCalden RW, MacDonald SJ, Bourne RB, Marr JT (2009) A randomized controlled trial comparing “high-flex” vs. “standard” posterior cruciate substituting polyethylene tibial inserts in total knee arthroplasty. J Arthroplasty 24:33–38

    Article  PubMed  Google Scholar 

  28. Mizu-uchi H, Colwell CW, Matsuda S, Flores-Hernandez C, Iwamoto Y (2011) Effect of total knee arthroplasty implant position on flexion angle before implant-bone impingement. J Arthroplasty 26:721–727

    Article  PubMed  Google Scholar 

  29. Rossi R, Bruzzone M, Bonasia DE, Ferro A, Castoldi F (2010) No early tibial tray loosening after surface cementing technique in mobile-bearing TKA. Knee Surg Sports Traumatol Arthrosc 18:1360–1365

    Article  PubMed  Google Scholar 

  30. Schurman DJ, Rojer DE (2005) Total knee arthroplasty: range of motion across five systems. Clin Orthop Relat Res 430:132–137

    Article  PubMed  Google Scholar 

  31. Schurman D, Parker J, Ornstein D (1985) Total condylar knee replacement. A study of factors influencing range of motion as late as two years after arthroplasty. J Bone Joint Surg Am 67:1006–1014

    PubMed  CAS  Google Scholar 

  32. Scuderi GR (2005) The stiff total knee arthroplasty: causality and solution. J Arthroplasty 20:23–26

    Article  PubMed  Google Scholar 

  33. Selvarajah E, Hooper G (2009) Restoration of the joint line in total knee arthroplasty. J Arthroplasty 24:1099–1102

    Article  PubMed  Google Scholar 

  34. Seo SS, Ha DJ, Kim CW, Choi JS (2009) Effect of posterior condylar offset on cruciate-retaining mobile TKA. Orthopedics 32:44–48

    Article  PubMed  Google Scholar 

  35. Shi K, Hayashida K, Umeda N, Yamamoto K, Kawai H (2008) Kinematic comparison between mobile-bearing and fixed-bearing inserts in NexGen legacy posterior stabilized flex total knee arthroplasty. J Arthroplasty 23:164–169

    Article  PubMed  Google Scholar 

  36. Stoller AP, Johnson TS, Popoola OO, Humphrey SM, Blanchard CR (2011) Highly crosslinked polyethylene in posterior-stabilized total knee arthroplasty: in vitro performance evaluation of wear, delamination, and tibial post durability. J Arthroplasty 26:483–491

    Article  PubMed  Google Scholar 

  37. Stulberg SD (2003) How accurate is current TKR instrumentation? Clin Orthop Relat Res 416:177–184

    Article  PubMed  Google Scholar 

  38. Victor J, Banks S, Bellemans J (2005) Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: a prospective randomised outcome study. J Bone Joint Surg Br 87:646–655

    PubMed  CAS  Google Scholar 

  39. Walker P, Garg A (1991) Range of motion in total knee arthroplasty. A computer analysis. Clin Orthop Relat Res 262:227–235

    PubMed  Google Scholar 

  40. Walker PS, Yildirim G, Fort JS, Roth J, White B, Klein GR (2007) Factors affecting the impingement angle of fixed- and mobile-bearing total knee replacement: a laboratory study. J Arthroplasty 22:745–752

    Article  PubMed  Google Scholar 

  41. Yosmaoglu HB, Baltaci G, Ozer H et al (2011) Effect of additional gracilis tendon harvest on muscle torque motor coordination, and knee laxity in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 19:1287–1292

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

No benefits in any form have been or will be received from any commercial party related either directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X., Shen, B., Kang, P. et al. The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 21, 2696–2703 (2013). https://doi.org/10.1007/s00167-012-2058-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-012-2058-7

Keywords

Navigation