Skip to main content

Advertisement

Log in

Mechanical functions of the three bundles consisting of the human anterior cruciate ligament

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The reconstruction technique to individually reconstruct multi-bundles of the anterior cruciate ligament (ACL) has been improved in the last decade. For further improvement of the technique, the present study was conducted to determine the force sharing among the three bundles (the medial and lateral bundles (AMM and AML) of the anteromedial (AM) bundle and the posterlateral (PL) bundle) of the human ACL in response to hyperextension, passive flexion–extension and anterior force to the knee.

Methods

Using a 6-DOF robotic system, the human cadaveric knee specimens were subjected to hyperextension, passive flexion–extension and anterior–posterior tests, while recording the 6-DOF motion and force/moment of the knees. The intact knee motions recorded during the tests were reproduced after sequential bundle transection to determine the bundle forces.

Results

The bundle forces were around 10 N at 5 N-m of hyperextension and remained less than 5 N during passive flexion–extension. In response to 100 N of anterior force, the AMM and PL bundle forces were slightly higher than the AML bundle force at full extension. The AMM bundle force remained at a high level up to 90° of flexion, with significant differences versus the AML bundle force at 15°, 30° and 60° of flexion and the PL bundle force at 90° of flexion.

Conclusion

The AMM bundle is the primary stabilizer to tibial anterior drawer through wide range of motion, while the AML bundle is the secondary stabilizer in deep flexion angles. The PL bundle is the crucial stabilizer to hyperextension as well as tibial anterior drawer at full extension.

Level of evidence

Prognostic study, Level II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adachi N, Ochi M, Uchino Y, Iwasa J, Kuriwaka M, Ito Y (2004) Reconstruction of the anterior cruciate ligament: single- versus double-bundle multi-stranded hamstring tendons. J Bone Joint Surg Br 86:515–520

    PubMed  CAS  Google Scholar 

  2. Albuquerque RFM, Sasaki SU, Amatuzzi MM, Angelini FJ (2007) Anterior cruciate ligament reconstruction with double bundle versus single bundle: experimental study. Acta Orthop Bras 3:335–344

    Google Scholar 

  3. Amis AA, Dawkins GPC (1991) Functional anatomy of the anterior cruciate ligament. J Bone Joint Surg Br 73:260–267

    PubMed  CAS  Google Scholar 

  4. Butler DL, Grood FR, Noyes FR, Zernicke RF, Brackett K (1984) Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J Biomech 17(8):579–596

    Article  PubMed  CAS  Google Scholar 

  5. Butler DL, Guan Y, Kay MD, Cummings JF, Feder SM, Levy MS (1992) Location-dependent variations in the material properties of the anterior cruciate ligament. J Biomech 25:511–518

    Article  PubMed  CAS  Google Scholar 

  6. Fu FH, Shan W, Starman JS, Okeke N, Imgang JJ (2008) Primary anatomic double-bundle anterior cruciate ligament reconstruction: a preliminary 2-year prospective study. Am J Sports Med 36:1263–1274

    Article  PubMed  Google Scholar 

  7. Fujie H, Mae T, Sekito T, Shino K (2000) Mechanical functions of human ACL bundles: development and application of a robotic knee simulator. In: Kajzer J, Tanaka E, Yamada H (eds) Human biomechanics and injury prevention. Springer, Tokyo, pp 256–260

    Google Scholar 

  8. Fujie H, Mabuchi K, Woo SL-Y, Livesay GA, Arai S, Tsumamoto Y (1993) The use of robotics technology to study human joint kinematics: a new methodology. J Biomech Eng 115:211–217

    Article  PubMed  CAS  Google Scholar 

  9. Fujie H, Livesay GA, Fujita M, Woo SL-Y (1996) Forces and moments in 6-DOF at the human joint: mathematical description for control. J Biomech 29:1577–1585

    PubMed  CAS  Google Scholar 

  10. Fujie H, Sekito T, Orita A (2004) A novel robotic system for joint biomechanical tests: application to the human knee joint. J Biomech Eng 126:54–61

    Article  PubMed  Google Scholar 

  11. Fujie H, Livesay GA, Woo SL-Y, Kashiwaguchi S, Blomstrom G (1995) The use of a universal force-moment sensor to determine in situ forces in ligaments: a new methodology. J Biomech Eng 117:1–7

    Article  PubMed  CAS  Google Scholar 

  12. Gabriel MT, Wong EK, Woo SL-Y, Yagi M, Debski RE (2004) Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthop Res 22:85–89

    Article  PubMed  Google Scholar 

  13. Girgis FG, Marshall JL, Monajem A (1975) The cruciate ligaments of the knee joint: Anatomical, functional, and experimental analysis. Clinical Orthop Relat Res 106:216–231

    Article  Google Scholar 

  14. Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description three-dimensional motions: application to the knee. J Biomech Eng 105:136–144

    Article  PubMed  CAS  Google Scholar 

  15. Hamada M, Shino K, Mitsuoka T, Abe N, Horibe S (1998) Cross-sectional measurement of the semitendinosus tendon for anterior cruciate ligament reconstruction. Arthroscopy 14:696–701

    Article  PubMed  CAS  Google Scholar 

  16. Hamada M, Shino K, Mae T et al (2001) Single versus Bi-socket ACL reconstruction using autogenous multiple-stranded hamstring tendons with endo-button femoral fixation: a prospective study. Arthroscopy 17:801–807

    PubMed  CAS  Google Scholar 

  17. Harner CD, Livesay GA, Kashiwaguchi S, Choi NY, Fujie H, Woo SL-Y (1995) Comparative study of the size and shape of human anterior and posterior cruciate ligaments. J Orthop Res 13:429–434

    Article  PubMed  CAS  Google Scholar 

  18. Hollis JM (1988) Development and application of a method for determining the in situ forces in anterior cruciate ligament fiber bundles. Doctoral Disertation, University of California at San Diego

  19. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Statist 6:65–70

    Google Scholar 

  20. Iwahashi T, Shino K, Nakata K, Nakamura N, Yamada Y, Yoshikawa H, Sugamoto K (2008) Assessment of the “functional length” of the three bundles of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 16:167–174

    Article  PubMed  Google Scholar 

  21. Kato Y, Ingham SJM, Linde-Rosen M, Smolinski P, Horaguchi T, Fu F (2010) Biomechanics of triple bundle anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 18:20–25

    Article  PubMed  Google Scholar 

  22. Li G, Rudy TW, Sakane M, Kanamori A, Ma CB, Woo SL-Y (1999) The importance of quadriceps and hamstring muscle loading on knee kinematics and in situ forces in the ACL. J Biomech 32:395–400

    Article  PubMed  CAS  Google Scholar 

  23. Mae T, Shino K, Miyama T, Shinjo H, Ochi T, Yoshikawa H, Fujie H (2001) Single- versus two-femoral socket anterior cruciate ligament reconstruction technique: biomechanical analysis using a robotic simulator. Arthroscopy 17:708–716

    Article  PubMed  CAS  Google Scholar 

  24. Markolf KL, Gorek JF, Kabo JM, Shapiro MS (1990) Direct measurement of resultant forces in the anterior cruciate ligament. J Bone Joint Surg Am 86:557–567

    Google Scholar 

  25. Muneta T, Sekiya I, Yagishita K, Ogiuchi T, Yamamoto H, Shinomiya K (1999) Two-bundle reconstruction of the anterior cruciate ligament using semitendinosus tendon with endobuttons: operative technique and preliminary results. Arthroscopy 15:618–624

    Article  PubMed  CAS  Google Scholar 

  26. Norwood LA, Cross MJ (1979) Anterior cruciate ligament: functional anatomy of its bundles in rotatory instabilities. Am J Sports Med 7:23–26

    Article  PubMed  CAS  Google Scholar 

  27. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstruction. J Bone Joint Surg Am 66:344–352

    PubMed  CAS  Google Scholar 

  28. Rosenberg TD, Brown GC, Deffner KT (1997) Anterior cruciate ligament reconstruction with quadrupled semitendinosus autograft. Sports Med Arthrosc Rev 5:51–58

    Google Scholar 

  29. Sakane M, Fox RJ, Woo SL-Y, Livesay GA, Li G, Fu FH (1997) In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res 15:285–293

    Article  PubMed  CAS  Google Scholar 

  30. Shino K, Nakata K, Nakamura N et al (2005) Anatomic anterior cruciate ligament reconstruction using two double-looped hamstring tendon grafts via twin femoral and triple tibial tunnels. Oper Tech Orthop 15:130–134

    Article  Google Scholar 

  31. Siebold R, Dehler C, Ellert T (2008) Prospective randomized comparison of double-bundle versus single-bundle anterior cruciate ligament reconstruction. Arthroscopy 24:137–145

    Article  PubMed  Google Scholar 

  32. Takai S, Woo SL-Y, Livesay GA, Adams DL, Fu FH (1993) Determination of the in situ loads on the human anterior cruciate ligament. J Orthop Res 11:686–695

    Article  PubMed  CAS  Google Scholar 

  33. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL-Y (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666

    PubMed  Google Scholar 

  34. Yagi M, Kuroda R, Nagamine K, Yoshiya S, Kurosaka M (2007) Double-bundle ACL reconstruction can improve rotational stability. Clin Orthop Relat Res 454:100–107

    Article  PubMed  Google Scholar 

  35. Yasuda K, Kondo E, Ichiyama H et al (2004) Anatomic reconstruction of the anteromedial and posterolateral bundles of the anterior cruciate ligament using hamstring tendon grafts. Arthroscopy 20:1015–1025

    Article  PubMed  Google Scholar 

  36. Yasuda K, Kondo E, Ichiyama H, Tanabe Y, Tohyama H (2006) Clinical evaluation of anatomic double-bundle anterior cruciate ligament reconstruction procedure using hamstring tendon grafts: comparisons among 3 different procedures. Arthroscopy 22:240–251

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The present study was financially supported in part by the Project-In-Aid for the establishment of Strategic Research Centers (BERC, Kogakuin University) and Grant-In-Aid for Scientific Research (#20591766) both from the MEXT, Japan, and by Smith&Nephew Endoscopy, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Fujie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujie, H., Otsubo, H., Fukano, S. et al. Mechanical functions of the three bundles consisting of the human anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 19 (Suppl 1), 47–53 (2011). https://doi.org/10.1007/s00167-011-1513-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1513-1

Keywords

Navigation