Abrial, J.-R., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open toolset for modelling and reasoning in Event-B. STTT12(6), 447–466 (2010)
Article
Google Scholar
Abrial, J.-R.: The B Book: assigning programs to meanings. Cambridge University Press, Cambridge (1996)
Book
MATH
Google Scholar
Abrial J-R (2007) A system development process with Event-B and the Rodin platform. In: ICFEM, pp 1–3
Abrial, J.-R.: Modeling in Event-B: system and software engineering. Cambridge University Press, Cambridge (2010)
Book
MATH
Google Scholar
Arthan R, Jones RB. Z in HOL in ProofPower. BCS FACS FACTS, 2005-1
Armando, A., Smaill, A., Green, I.: Automatic synthesis of recursive programs: the proof-planning paradigm. Autom Softw Eng6, 329–356 (1999)
Article
Google Scholar
Bundy A, Basin D, Hutter D, Ireland A (2005) Rippling: meta-level guidance for mathematical reasoning, volume 56 of Cambridge tracts in theoretical computer science. Cambridge University Press
Bryans JW, Fitzgerald JS, McCutcheon T (2011) Refinement-based techniques in the analysis of information flow policies for dynamic virtual organisations. In: Camarinha-Matos LM, Pereira-Klen A, Afsarmanesh H (eds) Adaptation and value creating collaborative networks. Springer, pp 314–321
Butler M, Hallerstede S (2007) The Rodin formal modelling tool. In:BCS-FACS
Blanchette JC, Paulson LC (2018) Hammering Away. A User’s Guide to Sledgehammer for Isabelle/HOL. http://isabelle.in.tum.de/dist/doc/sledgehammer.pdf
Bundy A (1998) A science of reasoning. In: International conference on automated reasoning with analytic tableaux and related methods
The Deploy project.http://www.deploy-project.eu/index.html. Accessed 2 Feb 2018
Dixon L, Fleuriot JD (2003) IsaPlanner: a prototype proof planner in Isabelle. In: CADE
Déharbe D, Fontaine P, Guyot Y, Voisin L (2012) SMT solvers for rodin. In: ABZ, pp 194–207
Dixon L (2005) A proof planning framework for Isabelle. Ph.D. thesis, School of Informatics, University of Edinburgh
Event-B and Rodin Documentation Wiki. Provers for Rodin.http://handbook.event-b.org/current/html/atelier_b_provers. Accessed 28 Feb 2015
Grov G, Kissinger A, Lin Y (2013) A graphical language for proof strategies. In:LPAR, pp 324–339. Springer
Grov G, Lin Y (2017) The Tinker tool for graphical tactic development. Int J Softw Tools Technol Transf 1–17
Hetzl S (2016) Why does induction require cut? Accessed 13 Aug 2016
Heras J, Komendantskaya E, Johansson M, Maclean E (2013) Proof-pattern recognition and lemma discovery in ACL2. In: Logic for programming, artificial intelligence, and reasoning. Springer, pp 389–406
Ireland, A., Bundy, A.: Productive use of failure in inductive proof. J Autom Reason16(1–2), 79–111 (1996)
MathSciNet
Article
MATH
Google Scholar
Ireland A, Grov G, Butler M (2010) Reasoned modelling critics: turning failed proofs into modelling guidance. In: ABZ, pp 189–202. Springer
Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive theories. J Autom Reason47(3), 251–289 (2011)
MathSciNet
Article
MATH
Google Scholar
Jones, C.B.: Systematic software development using VDM, 2nd edn. Prentice Hall, Upper Saddle River (1990)
MATH
Google Scholar
Johansson M, Rosén D, Smallbone N, Claessen K (2014) Hipster: integrating theory exploration in a proof assistant.In: CoRR, arXiv:1405.3426
Lamport, L.: Specifying systems: the TLA+ language and tools for hardware and software engineers. Addison-Wesley Longman Publishing Co., Inc, Boston (2002)
Google Scholar
Lin Y, Bundy A, Grov G (2012) The use of rippling to automate Event-B invariant preservation proofs. In: NASA formal methods, pp 231–236
Lin Y (2015) The use of rippling to automate Event-B invariant preservation proofs. Ph.D. thesis
Liang Y, Lin Y, Grov G (2016) `the Tinker' for Rodin. In: ABZ. Springer, pp 262–268
Loomes M, Woodcock JCP (1988) Software engineering mathematics: formal methods demystified
Montano-RivasO, McCasland RL, Dixon L, Bundy A (2010) Scheme-based synthesis of inductive theories. In: MICAI, pp 348–361
Paper source webpage for POPPA.http://www.sites.google.com/site/evalpoppa/. Accessed 4 Feb 2018
Paulson LC (1994) Isabelle: a generic theorem prover, volume 828 ofLNCS. Springer
Rodin Proof Tactics. Functional overriding in goal.http://wiki.event-b.org/index.php/Rodin_Proof_Tactics. Accessed 2 Feb 2018
Schmalz M (2012) Formalizing the logic of Event-B. Partial functions, definitional extensions, and automated theorem proving. Ph.D. thesis, ETH Zurich
Woodcock, J., Davies, J.: Using Z: specification, refinement, and proof. Prentice Hall, London (1996)
MATH
Google Scholar
Wright S (2009) Formal construction of instruction set architectures. Ph.D. thesis, University of Bristol, UK