Skip to main content
Log in

Collaboration and complexity: an experiment on the effect of multi-actor coupled design

  • Original Paper
  • Published:
Research in Engineering Design Aims and scope Submit manuscript

Abstract

Design of complex systems requires collaborative teams to overcome limitations of individuals; however, teamwork contributes new sources of complexity related to information exchange among members. This paper formulates a human subjects experiment to quantify the relative contribution of technical and social sources of complexity to design effort using a surrogate task based on a parameter design problem. Ten groups of 3 subjects each perform 42 design tasks with variable problem size and coupling (technical complexity) and team size (social complexity) to measure completion time (design effort). Results of a two-level regression model replicate past work to show completion time grows geometrically with problem size for highly coupled tasks. New findings show the effect of team size is independent from problem size for both coupled and uncoupled tasks considered in this study. Collaboration contributes a large fraction of total effort, and it increases with team size: about 50–60 % of time and 70–80 % of cost for pairs and 60–80 % of time and 90 % of cost for triads. Conclusions identify a role for improved design methods and tools to anticipate and overcome the high cost of collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ameri F, Summers JD, Mocko GM, Porter M (2008) Engineering design complexity: an investigation of methods and measures. Res Eng Des 19(2–3):161–179. doi:10.1007/s00163-008-0053-2

  • Arena MV, Younossi O, Brancato K, Blockstein I, Grammich CA (2008) Why has the cost of fixed-wing aircraft risen? A macroscopic examination of the trends in U.S. military aircraft costs over the past several decades. RAND Corporation, Santa Monica

  • Argote L, Insko CA, Yovetich N, Romero AA (1995) Group learning curves: the effects of turnover and task complexity on group performance. J Appl Soc Psychol 25(6):512–529. doi:10.1111/j.1559-1816.1995.tb01765.x

    Article  Google Scholar 

  • Arias E, Eden H, Fisher G (1997) Enhancing communication, facilitating shared understanding, and creating better artifacts by integrating physical and computational media for design. In: Proceedings of the 2nd conference on designing interactive systems: processes, practices, methods, and techniques, pp 1–12. doi:10.1145/263552.263553

  • Arias E, Eden H, Fischer G, Gorman A, Scharff E (2000) Transcending the individual human mind–creating shared understanding through collaborative design. ACM T Comput Hum Int 7(1):84–113. doi:10.1145/344949.345015

    Article  Google Scholar 

  • Bashir HA, Thomson V (1999) Estimating design complexity. J Eng Design 10(3):247–257. doi:10.1080/095448299261317

    Google Scholar 

  • Bashir HA, Thomson V (2001) Models for estimating design effort and time. Des Stud 22(2):141–155. doi:10.1016/S0142-694X(00)00014-4

    Article  Google Scholar 

  • Bates D, Mäechler M, Bolker BM, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. doi:10.18637/jss.v067.i01

    Article  Google Scholar 

  • Braha D, Bar-Yam Y (2007) The statistical mechanics of complex product development: empirical and analytical results. Manage Sci 53(7):1127–1145. doi:10.1287/mnsc.1060.0617

    Article  MATH  Google Scholar 

  • Braha D, Maimon O (1998a) A mathematical theory of design: foundations, algorithms and applications. Springer, Berlin. doi:10.1007/978-1-4757-2872-9

    MATH  Google Scholar 

  • Braha D, Maimon O (1998b) The measurement of a design structural and functional complexity. IEEE T Syst Man Cyb 28(4):527–535. doi:10.1109/3468.686715

    Article  MATH  Google Scholar 

  • Braha D, Brown DC, Chakrabarti A, Dong A, Fadel G, Maier JR, Seering W, Ullman DG, Wood K (2013) DTM at 25: Essays on themes and future directions. In: ASME 2013 international design engineering technical conferences and computers and information in engineering conference, pp 1–17. doi:10.1115/DETC2013-12280

  • Briggs RO, De Vreede GJ, Nunamaker JF Jr (2003) Collaboration engineering with ThinkLets to pursue sustained success with group support systems. J Manag Inf Syst 19(4):31–64. doi:10.1080/07421222.2003.11045743

    Google Scholar 

  • Bucciarelli LL (1988) An ethnographic perspective on engineering design. Des Stud 9(3):159–168. doi:10.1016/0142-694X(88)90045-2

    Article  Google Scholar 

  • Card D, Agresti W (1988) Measuring software design complexity. J Syst Softw 8(3):185–197. doi:10.1016/0164-1212(88)90021-0

    Article  Google Scholar 

  • Cohen SG, Bailey DE (1997) What makes teams work: group effectiveness research from the shop floor to the executive suite. J Manag 23(3):239–290. doi:10.1177/014920639702300303

    Google Scholar 

  • Cooper KG, Lyneis JM, Bryant BJ (2002) Learning to learn, from past to future. Int J Proj Manag 20(3):213–219. doi:10.1016/S0263-7863(01)00071-0

    Article  Google Scholar 

  • De Jong K (1975) An analysis of the behaviour of a class of genetic adaptive systems. Ph.D. thesis, University of Michigan, Ann Arbor

  • Dirks KT (1999) The effects of interpersonal trust on work group performance. J Apply Psychol 84(3):445–455. doi:10.1037/0021-9010.84.3.445

    Article  Google Scholar 

  • El-Haik B, Yang K (1999) The components of complexity in engineering design. IIE Trans 31(10):925–934. doi:10.1080/07408179908969893

    Google Scholar 

  • Engelbart DC (1995) Toward augmenting the human intellect and boosting our collective IQ. Commun ACM 38(8):30–32. doi:10.1145/208344.208352

    Article  Google Scholar 

  • Eppinger SD, Whitney DE, Smith RP, Gebala DA (1994) A model-based method for organizing tasks in product development. Res Eng Des 6(1):1–13. doi:10.1007/BF01588087

    Article  Google Scholar 

  • Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47(6):381–391. doi:10.1037/h0055392

    Article  Google Scholar 

  • Flager F, Gerver DJ, Kallman B (2014) Measuring the impact of scale and coupling on solution quality for building design problems. Des Stud 35(2):180–199. doi:10.1016/j.destud.2013.11.001

    Article  Google Scholar 

  • Flyvbjerg B, Holm MS, Buhl S (2002) Underestimating costs in public works projects: error or lie? J Am Plann Assoc 68(3):279–295. doi:10.1080/01944360208976273

    Article  Google Scholar 

  • Friedenthal S, Moore A, Steiner R (2012) A practical guide to SysML, the systems modeling language, 2nd edn. Elsevier, Waltham

    Google Scholar 

  • Gentle JE (1998) Numerical linear algebra for applications in statistics. Springer, New York, pp 87–121

    MATH  Google Scholar 

  • Goodman PS, Leyden DP (1991) Familiarity and group productivity. J Apply Psychol 76(4):578–586. doi:10.1037/0021-9010.76.4.578

    Article  Google Scholar 

  • Halekoh U, Højsgaard S (2014) A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models–the R package pbkrtest. J Stat Softw 59(9):1–32. doi:10.18637/jss.v059.i09

    Article  Google Scholar 

  • Haskins C (ed) (2011) Systems engineering handbook. INCOSE-TP-2003-002-03.2.2, San Diego

  • Henderson B (1968) The experience curve. Perspectives 16:1–2

    Google Scholar 

  • Hirschi NW, Frey DD (2002) Cognition and complexity: an experiment on the effect of coupling in parameter design. Res Eng Des 13:123–131. doi:10.1007/s00163-002-0011-3

    Google Scholar 

  • Huberman BA, Hogg T (1995) Communities of practice: performance and evolution. Comput Math Org Theory 1(1):73–92. doi:10.1007/BF01307829

    Article  Google Scholar 

  • Ingham AG, Levinger G, Graves J, Peckham V (1974) The Ringelmann effect: studies of group size and group performance. J Exp Soc Psychol 10(4):371–384. doi:10.1016/0022-1031(74)90033-X

    Article  Google Scholar 

  • Jehn KA, Pradhan P (1997) Interpersonal relationships and task performance: an examination of mediation processes in friendship and acquaintance groups. J Pers Soc Psychol 72(4):775–790. doi:10.1037/0022-3514.72.4.775

    Article  Google Scholar 

  • Kearns M, Suri S, Montfort N (2006) An experimental study of the coloring problem on human subject networks. Science 313:824–827. doi:10.1126/science.1127207

    Article  Google Scholar 

  • Kerr NL, Tindale RS (2004) Group performance and decision making. Annu Rev Psychol 55:623–655. doi:10.1146/annurev.psych.55.090902.142009

    Article  Google Scholar 

  • Konda S, Monarch I, Sargent P, Subrahmanian E (1992) Shared memory in design: a unifying theme for research and practice. Res Eng Des 4(1):23–42. doi:10.1007/BF02032390

    Article  Google Scholar 

  • Kravitz DA, Martin B (1986) Ringelmann rediscovered: the original article. J Pers Soc Psychol 50(5):936–941. doi:10.1037/0022-3514.50.5.936

    Article  Google Scholar 

  • Lazer D, Friedman A (2007) The network structure of exploration and exploitation. Admin Sci Q 52(4):667–694. doi:10.2189/asqu.52.4.667

    Article  Google Scholar 

  • Lu SCY, Elmaraghy W, Schuh G, Wilhelm R (2007) A scientific foundation of collaborative engineering. CIRP Ann Manuf Technol 56(2):605–634. doi:10.1016/j.cirp.2007.10.010

    Article  Google Scholar 

  • Lyneis JM, Cooper KG, Els SA (2001) Strategic management of complex projects: a case study using system dynamics. Syst Dyn Rev 17(3):237–260. doi:10.1002/sdr.213

    Article  Google Scholar 

  • Maier MW (1998) Architecting principles for systems-of-systems. Syst Eng 1(4):267–284

    Article  Google Scholar 

  • Mason W, Watts DJ (2012) Collaborative learning in networks. P Natl Acad Sci USA 109(3):764–769. doi:10.1073/pnas.1110069108

    Article  Google Scholar 

  • McCubbins MD, Paturi R, Weller N (2009) Connected coordination: network structure and group coordination. Am Polit Res 37(5):899–920. doi:10.1177/1532673X09337184

    Article  Google Scholar 

  • Miller GA (1956) The magic number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–97. doi:10.1037/h0043158

    Article  Google Scholar 

  • Moløkken K, Jørgensen M (2003) A review of surveys on software effort estimation. In: Proceedings of the 2003 ACM-IEEE international symposium on empirical software engineering, pp 220–230. doi:10.1109/ISESE.2003.1237981

  • Mullen B, Copper C (1994) The relation between group cohesiveness and performance: an integration. Psychol Bull 115(2):210–227. doi:10.1037/0033-2909.115.2.210

    Article  Google Scholar 

  • National Aeronautical and Space Administration (2007) NASA systems engineering handbook. NASA/SP-2007-6105 Rev1, Washington, D.C

  • National Research Council (2010) Controlling cost growth of NASA earth and space science missions. Washington, D.C

  • Postrel S (2002) Islands of shared knowledge: specialization and mutual understanding in problem-solving teams. Org Sci 13(3):303–320. doi:10.1287/orsc.13.3.303.2773

    Article  Google Scholar 

  • Raudenbush SW, Bryk AS (2002) Hierarchical linear models: applications and data analysis methods, 2nd edn. Sage Publications, Thousand Oaks

    Google Scholar 

  • Rhodes DH, Ross AM (2010) Five aspects of engineering complex systems: Emerging constructs and methods. In: 4th Annual IEEE systems conference, San Diego. doi:10.1109/SYSTEMS.2010.5482431

  • Sage AP, Cuppan CD (2001) On the systems engineering and management of systems of systems and federations of systems. Information knowledge systems management 2(4):325–345

    Google Scholar 

  • Shore J, Bernstein E, Lazer D (2015) Facts and figuring: an experimental investigation of network structure and performance in information and solution spaces. Org Sci 26(5):1432–1446. doi:10.1287/orsc.2015.0980

    Article  Google Scholar 

  • Sinha K (2014) Structural complexity and its implications for design of cyber-physical systems. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge

  • Smith RP, Eppinger SD (1997) Identifying controlling features of engineering design iteration. Manag Sci 43(3):276–293. doi:10.1287/mnsc.43.3.276

    Article  MATH  Google Scholar 

  • Suh NP (1999) A theory of complexity, periodicity and the design axioms. Res Eng Des 11(2):116–132. doi:10.1007/PL00003883

    Article  Google Scholar 

  • Summers JD, Shah JJ (2010) Mechanical engineering design complexity metrics: size, coupling, and solvability. J Mech Design 132(2):021004. doi:10.1115/1.4000759

    Article  Google Scholar 

  • US Government Accountability Office (2011) Trends in Nunn–McCurdy breaches for major defense acquisition programs. GAO-11-295R, Washington, D.C

  • Wang L, Shen W, Xie H, Neelamkavil J, Pardasani A (2002) Collaborative conceptual design-state of the art and future trends. Comput Aided Design 34(13):981–996. doi:10.1016/S0010-4485(01)00157-9

    Article  Google Scholar 

  • Weingart LR (1992) Impact of group goals, task component complexity, effort, and planning on group performance. J Apply Psychol 77(5):682–693. doi:10.1037/0021-9010.77.5.682

    Article  Google Scholar 

  • Williams T (2005) Assessing and moving on from the dominant project management discourse in the light of project overruns. IEEE T Eng Manage 52(4):497–508. doi:10.1109/TEM.2005.856572

    Article  Google Scholar 

  • Wood RE (1986) Task complexity: definition of the construct. Org Behav Hum Decis 37:60–82. doi:10.1016/0749-5978(86)90044-0

    Article  Google Scholar 

  • Woolley AW, Chabris CF, Pentland A, Hashmi N, Malone TW (2010) Evidence for a collective intelligence factor in the performance of human groups. Science 330:686–688. doi:10.1126/science.1193147

    Article  Google Scholar 

  • Yassine A, Joglekar N, Braha D, Eppinger S, Whitney D (2003) Information hiding in product development: the design churn effect. Res Eng Des 14(3):145–161. doi:10.1007/s00163-003-0036-2

    Article  Google Scholar 

  • Yassine A, Maddah B, Nehme N (2013) Optimal information exchange policies in integrated product development. IIE Trans 45(12):1249–1262. doi:10.1080/0740817X.2012.762487

    Article  Google Scholar 

Download references

Acknowledgments

This research was completed with support from the US Department of Defense under a National Defense Science and Engineering Graduate (NDSEG) fellowship and with equipment support from the Center for Complex Engineering Systems at King Abdulaziz City for Science and Technology (KACST) and Massachusetts Institute of Technology. The authors thank Dan Frey for inspiring this study and helpful feedback along the way, Roi Guinto for his assistance in conducting experimental sessions, four anonymous reviewers for substantial feedback to improve this paper in the context of the design literature, and more than 30 participants for volunteering their time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul T. Grogan.

Additional information

This work was funded by a National Defense Science and Engineering Graduate (NDSEG) fellowship. This research was performed at Massachusetts Institute of Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grogan, P.T., de Weck, O.L. Collaboration and complexity: an experiment on the effect of multi-actor coupled design. Res Eng Design 27, 221–235 (2016). https://doi.org/10.1007/s00163-016-0214-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00163-016-0214-7

Keywords

Navigation