Skip to main content
Log in

Tolerance analysis of a product coupling geometric and architectural specifications in a probabilistic approach

  • Original Paper
  • Published:
Research in Engineering Design Aims and scope Submit manuscript

Abstract

This article describes tolerance analysis using a reliability-based approach to ensuring that a functional condition is satisfied. A particular feature of this procedure is that it defines the combined effects of geometric and dimensional ISO specifications for product parts, and the architectural parameters that define the relative positions of parts in contact. In the first part, we describe configuring the product parameters by geometric deviations, and from this, a global model is produced to characterise the variation in rotor/stator clearance in a turboshaft engine turbine. This model relies on tolerance zone dimensions, dimensional tolerances and architectural parameters. When clearance is examined using the reliability-based approach, links emerge between the turbine’s architectural parameters and its geometric and dimensional specifications. Indicators can then be deduced which guide the designer in selecting the optimum turbine architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

i, j :

Surface j of part i

i, 0:

Nominal model of part i

D i,jn :

Nominal diameter D of i, j (case of cylindrical surface)

d i,j :

Dimension deviation of diameter of i, j (case of cylindrical surface)

t i,j :

Dimension of the tolerance zone of i, j

α i,j/i,0, β i,j/i,0 and γ i,j/i,0 :

Orientation deviations of ij with respect to i, 0

A i,j/i,0, B i,j/i,0 and Γ i,j/i,0 :

Degrees of invariance in rotation of ij with respect to i, 0

u T_i,j/i,0, v T_i,j/i,0 and w T_i,j/i,0 :

Translation deviations of ij with respect to i, 0 at point T

U T_i,j/i,0, V T_i,j/i,0 and W T_i,j/i,0 :

Degrees of invariance in translation of ij with respect to i, 0 at point T

\( \left[ {d_{i,j/i,0} } \right] = \left[ {\begin{array}{*{20}c} {{\varvec{\rho}}_{i,j/i,0} } \\ {{\mathbf{\varepsilon }}_{T - i,j/i,0} } \\ \end{array} } \right] \) :

Small displacement torsor (SDT) of surface i, j with respect to i, 0

\( {\varvec{\rho}}_{i,j/i,0} = \left( {\begin{array}{*{20}c} {\alpha_{i,j/i,0} \quad {\text{or}}\quad {\rm A}_{i,j/i,0} } \\ {\beta_{i,j/i,0} \quad {\text{or}}\quad {\rm B}_{i,j/i,0} } \\ {\gamma_{i,j/i,0} \quad {\text{or}}\quad \Upgamma_{i,j/i,0} } \\ \end{array} } \right) \) :

Rotation vector

\( {\mathbf{\varepsilon }}_{T\_i,j/i,0} = \left( {\begin{array}{*{20}c} {u_{T\_i,j/i,0} \quad {\text{or}}\quad U_{T\_i,j/i,0} } \\ {v_{T\_i,j/i,0} \quad {\text{or}}\quad V_{T\_i,j/i,0} } \\ {w_{T\_i,j/i,0} \quad {\text{or}}\quad W_{T\_i,j/i,0} } \\ \end{array} } \right) \) :

Translation vector expressed at point T

References

  • Anselmetti B (2006) Generation of functional tolerancing based on positioning features. Comput Aided Des 38:902–919

    Article  Google Scholar 

  • Ballot E, Bourdet P (1995) Geometrical behavior laws for computer aided tolerancing. In: Proceedings of 4th CIRP seminar on computer aided tolerancing, Tokyo, Japan, pp 143–153

  • Ballu A, Falgarone H, Chevassus N, Mathieu L (2006) A new design method based on functions and tolerance specifications for product modeling. CIRP Ann Manuf Technol 55:139–142

    Article  Google Scholar 

  • Ballu A, Mathieu L, Legoff O (2010) Representation of mechanical assemblies and specifications by graphs, geometric tolerancing of products, ISBN 978-1-84821-118-6. Iste-Wiley, pp 87–110

  • Bourdet P, Mathieu L, Lartigue C, Ballu A (1996) The concept of the small displacement torsor in metrology. Adv Math Tools Metrol II(40):110–122

    Google Scholar 

  • Bourdet P, Thiébaut F, Cid G (2010) Writing the 3D chain of dimensions (Tolerance Stack-Up) in symbolic expressions, geometric tolerancing of products, ISBN 978-1-84821-118-6, ISTE-WILEY, pp 125–149

  • Clément A, Bourdet P (1988) A study of optimal-criteria identification based on the small-displacement screw model. Ann CIRP 37:503–506

    Google Scholar 

  • Clément A, Rivière A, Serré P, Valade C (1998) The TTRS: 13 constraints for dimensioning and tolerancing, ISBN 13: 9780412830006. Chapman and Hall, Toronto, pp 122–129

    Google Scholar 

  • Clozel P (2001) 3d tolerance analysis, from preliminary study, ISBN 1-4020-1423-6. Kluwer Academic Publisher, Cachan (France), pp 93–104

  • Dantan JY, Mathieu L, Ballu A, Martin P (2005) Tolerance synthesis: quantifier notion and virtual boundary. Comput Aided Des 37:231–240

    Article  Google Scholar 

  • Dantan JY, Ballu A, Mathieu L (2008) Geometrical product specifications: model for product lifecycle. Comput Aided Des 40(4):493–501

    Google Scholar 

  • Defazio TL, Edsall AC, Gustavson RE, Hernandez J, Hutchins PM, Leung HW et al (1993) A prototype of feature based design for assembly. J Mech Des 115:723–734

    Article  Google Scholar 

  • Dufaure J, Teissandier D (2008) A tolerancing framework to support geometric specifications traceability. Int J Adv Manuf Technol 36:894–907

    Article  Google Scholar 

  • Fiessler B, Neumann H-J, Rackwitz R (1979) Quadratic limit states in structural reliability. J Eng Mech ASCE 105(4):661–676

    Google Scholar 

  • Hasofer AM, Lind NC (1974) Exact and invariant second-moment code format. J Eng Mech 100:111–121

    Google Scholar 

  • ISO1101 (2004) Geometrical Product Specifications (GPS), Geometrical tolerancing, Tolerances of form, orientation, location and run-out

  • ISO3952-1 (1981) Kinematic diagrams—Graphical symbols-Part 1

  • ISO406 (1995) Technical drawing, tolerancing of linear and angular dimensions

  • ISO5459 (1981) Technical drawings—Geometrical tolerancing—Datums and datum-systems for geometrical tolerances

  • ISO8015 (1985) Technical drawings—Fundamental tolerancing principle

  • Johannesson H, Soderberg R (2000) Structure and matrix models for tolerance analysis from configuration to detail design. Res Eng Des 12:112–125

    Article  Google Scholar 

  • Lemaire M (2005) Fiabilité des structures—couplage mécano-fiabiliste statique, 1ère éd. Hermès science

  • Lindkvist L, Soderberg R (2003) Computer-aided tolerance chain and stability analysis. J Eng Des 14:17–39

    Article  Google Scholar 

  • Liu J, Wilhem RG (2001) Genetic algorithms for TTRS tolerance analysis, ISBN 1-4020-1423-6. Kluwer academic publisher, Cachan, France, pp 73–82

  • Madsen HO, Krenk S, Lind NC (1986a) Methods of structural safety. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Madsen HO, Krenk S, Lind NC (1986b) Methods of structural safety. Prentice-Hall, Inc., Englewood Cliffs

    Google Scholar 

  • Niandou H, Breysse D (2007) Reliability analysis of a piled raft accounting for soil horizontal variability. Comput Geotech 34:71–80

    Article  Google Scholar 

  • Serre P, Rivière A, Clément A (2001) Analysis of functional geometrical specifications, ISBN 1-4020-1423-6. Kluwer Academic Publisher, Cachan, France, pp 115–125

  • Teissandier D, Dufaure J (2010) Product model for tolerancing, geometric tolerancing of products, ISBN 978-1-84821-118-6. ISTE-WILEY, pp 55–86

  • Teissandier D, Couétard Y, Gérard A (1999) A computer aided tolerancing model: proportioned assemblies clearance volume. Comput Aided Des 31:805–817

    Article  MATH  Google Scholar 

  • Turner JU (1990) Relative positioning of parts in assemblies using mathematical programming. Comput Aided Des 22:394–400

    Article  Google Scholar 

  • Whitney DE, Adams JD (2001) Application of screw theory to analysis of mobility and constraint of mechanisms. J Mech Des 123:26–32

    Article  Google Scholar 

  • Wirtz A (1993) Vectorial tolerancing a basic element for quality control, ISBN 2-212-08779-9. Eyrolles, Cachan, France, pp 115–228

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Ledoux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledoux, Y., Teissandier, D. Tolerance analysis of a product coupling geometric and architectural specifications in a probabilistic approach. Res Eng Design 24, 297–311 (2013). https://doi.org/10.1007/s00163-012-0146-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00163-012-0146-9

Keywords

Navigation