Skip to main content
Log in

Network-theoretic modeling of fluid–structure interactions

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The coupling interactions between deformable structures and unsteady fluid flows occur across a wide range of spatial and temporal scales in many engineering applications. These fluid–structure interactions (FSI) pose significant challenges in accurately predicting flow physics. In the present work, two multi-layer network approaches are proposed that characterize the interactions between the fluid and structural layers for an incompressible laminar flow over a two-dimensional compliant flat plate at a 35\(^{\circ }\) angle of attack. In the first approach, the network nodes are formed by wake vortices and bound vortexlets, and the edges of the network are defined by the induced velocity between these elements. In the second approach, coherent structures (fluid modes), contributing to the kinetic energy of the flow, and structural modes, contributing to the kinetic energy of the compliant structure, constitute the network nodes. The energy transfers between the modes are extracted using a perturbation approach. Furthermore, the network structure of the FSI system is simplified using the community detection algorithm in the vortical approach and by selecting dominant modes in the modal approach. Network measures are used to reveal the temporal behavior of the individual nodes within the simplified FSI system. Predictive models are then built using both data-driven and physics-based methods. Overall, this work sets the foundation for network-theoretic reduced-order modeling of fluid–structure interactions, generalizable to other multi-physics systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wright, J.R., Cooper, J.E.: Introduction to Aircraft Aeroelasticity and Loads, vol. 20. Wiley, Hoboken (2008)

    Google Scholar 

  2. Mittal, R., Seshadri, V., Udaykumar, H.S.: Flutter, tumble and vortex induced autorotation. Theor. Comput. Fluid Dyn. 17(3), 165–170 (2004)

    Article  MATH  Google Scholar 

  3. Shoele, K., Mittal, R.: Flutter instability of a thin flexible plate in a channel. J. Fluid Mech. 786, 29–46 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Patil, M.J., Hodges, D.H., Cesnik, C.E.S.: Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft. J. Aircraft 38(1), 88–94 (2001)

    Article  Google Scholar 

  5. d’Oliveira, F.A., Melo, F.C.L., Devezas, T.C.: High-altitude platforms-present situation and technology trends. J. Aerosp. Technol. Manag. 8, 249–262 (2016)

    Article  Google Scholar 

  6. Fladeland, M., Schoenung, S., Albertson, R.: Demonstrating next generation high-altitude, long endurance aircraft for earth science. Technical report (2019)

  7. Enevoldsen, P., Xydis, G.: Examining the trends of 35 years growth of key wind turbine components. Energy Sustain. Dev. 50, 18–26 (2019)

    Article  Google Scholar 

  8. Livne, E.: Aircraft active flutter suppression: state of the art and technology maturation needs. J. Aircraft 55(1), 410–452 (2018)

    Article  Google Scholar 

  9. Dickinson, M.H.: Directional sensitivity and mechanical coupling dynamics of campaniform sensilla during chordwise deformations of the fly wing. J. Exp. Biol. 169(1), 221–233 (1992)

    Article  Google Scholar 

  10. Young, J., Walker, S.M., Bomphrey, R.J., Taylor, G.K., Thomas, A.L.R.: Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325(5947), 1549–1552 (2009)

    Article  Google Scholar 

  11. Mountcastle, A.M., Daniel, T.L.: Aerodynamic and functional consequences of wing compliance. In: Animal Locomotion, pp. 311–320. Springer, New York (2010)

  12. Mountcastle, A.M., Daniel, T.L.: Vortexlet models of flapping flexible wings show tuning for force production and control. Bioinspiration Biomim. 5(4), 045005 (2010)

    Article  Google Scholar 

  13. Colmenares, D., Kania, R., Zhang, W., Sitti, M.: Compliant wing design for a flapping wing micro air vehicle. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 32–39. IEEE (2015)

  14. Li, D., Zhao, S., Da Ronch, A., Xiang, J., Drofelnik, J., Li, Y., Zhang, L., Wu, Y., Kintscher, M., Monner, H.P.: A review of modelling and analysis of morphing wings. Prog. Aerosp. Sci. 100, 46–62 (2018)

    Article  Google Scholar 

  15. Dowell, E.H., Hall, K.C.: Modeling of fluid–structure interaction. Annu. Rev. Fluid Mech. 33, 445 (2001)

    Article  MATH  Google Scholar 

  16. Hodges, D.H., Pierce, G.A.: Introduction to Structural Dynamics and Aeroelasticity, vol. 15. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  17. Brown, A.G., Shi, Y., Marzo, A., Staicu, C., Valverde, I., Beerbaum, P., Lawford, P.V., Hose, D.R.: Accuracy vs. computational time: translating aortic simulations to the clinic. J. Biomech. 45(3), 516–523 (2012)

    Article  Google Scholar 

  18. Shinde, V., McNamara, J., Gaitonde, D., Barnes, C., Visbal, M.: Transitional shock wave boundary layer interaction over a flexible panel. J. Fluids Struct. 90, 263–285 (2019)

    Article  Google Scholar 

  19. Mahajan, A.J., Kaza, K.R.V., Dowell, E.H.: Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter. J. Fluids Struct. 7(1), 87–103 (1993)

    Article  Google Scholar 

  20. Brunton, S.L., Rowley, C.W.: Empirical state-space representations for Theodorsen’s lift model. J. Fluids Struct. 38, 174–186 (2013)

    Article  Google Scholar 

  21. Hickner, M.K., Fasel, U., Nair, A.G., Brunton, B.W., Brunton, S.L.: Data-driven unsteady aeroelastic modeling for control. AIAA J. 61, 1–14 (2022)

    Google Scholar 

  22. Hessenthaler, A., Gaddum, N.R., Holub, O., Sinkus, R., Röhrle, O., Nordsletten, D.: Experiment for validation of fluid–structure interaction models and algorithms. Int. J. Numer. Methods Biomed. Eng. 33(9), 2848 (2017)

    Article  Google Scholar 

  23. Gomes, J.P., Yigit, S., Lienhart, H., Schäfer, M.: Experimental and numerical study on a laminar fluid–structure interaction reference test case. J. Fluids Struct. 27(1), 43–61 (2011)

    Article  Google Scholar 

  24. Eberle, A.L., Reinhall, P.G., Daniel, T.L.: Fluid–structure interaction in compliant insect wings. Bioinspiration Biomim. 9(2), 025005 (2014)

    Article  Google Scholar 

  25. Ramesh, K., Gopalarathnam, A., Granlund, K., Ol, M.V., Edwards, J.R.: Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding. J. Fluid Mech. 751, 500–538 (2014)

    Article  MathSciNet  Google Scholar 

  26. Kuzmina, K., Marchevsky, I., Ryatina, E.: Numerical simulation in 2D strongly coupled FSI problems for incompressible flows by using vortex method. In: AIP Conference Proceedings, vol. 2027, p. 040045. AIP Publishing LLC (2018)

  27. Fasel, U., Fonzi, N., Iannelli, A., Brunton, S.L.: FlexWing-ROM: a matlab framework for data-driven reduced-order modeling of flexible wings. J. Open Source Softw. 7(80), 4211 (2022)

    Article  Google Scholar 

  28. Zheng, X., Xue, Q., Mittal, R., Beilamowicz, S.: A coupled sharp-interface immersed boundary-finite-element method for flow–structure interaction with application to human phonation. J. Biomech. Eng. 132(11), 111003 (2010)

    Article  Google Scholar 

  29. Bungartz, H.-J., Lindner, F., Gatzhammer, B., Mehl, M., Scheufele, K., Shukaev, A., Uekermann, B.: preCICE-a fully parallel library for multi-physics surface coupling. Comput. Fluids 141, 250–258 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Landajuela, M., Vidrascu, M., Chapelle, D., Fernández, M.A.: Coupling schemes for the FSI forward prediction challenge: comparative study and validation. Int. J. Numer. Methods Biomed. Eng. 33(4), 2813 (2017)

    Article  Google Scholar 

  31. Formaggia, L., Moura, A., Nobile, F.: On the stability of the coupling of 3d and 1d fluid–structure interaction models for blood flow simulations. ESAIM Math. Model. Numer. Anal. 41(4), 743–769 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, New York (2010)

    Book  MATH  Google Scholar 

  33. Borgatti, S.P., Mehra, A., Brass, D.J., Labianca, G.: Network analysis in the social sciences. Science 323(5916), 892–895 (2009)

    Article  Google Scholar 

  34. Ferrara, E.: A large-scale community structure analysis in Facebook. EPJ Data Sci. 1(1), 1–30 (2012)

    Article  Google Scholar 

  35. Campedelli, G.M., Cruickshank, I., Carley, K.: A complex networks approach to find latent clusters of terrorist groups. Appl. Netw. Sci. 4(1), 1–22 (2019)

    Article  Google Scholar 

  36. Barabasi, A.-L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101–113 (2004)

    Article  Google Scholar 

  37. Gosak, M., Markovič, R., Dolenšek, J., Rupnik, M.S., Marhl, M., Stožer, A., Perc, M.: Network science of biological systems at different scales: a review. Phys. Life Rev. 24, 118–135 (2018)

    Article  MATH  Google Scholar 

  38. Deo, N.: Graph Theory with Applications to Engineering and Computer Science. Courier Dover Publications, New York (2017)

    MATH  Google Scholar 

  39. Harries, D., O’Kane, T.J.: Dynamic Bayesian networks for evaluation of granger causal relationships in climate reanalyses. J. Adv. Model. Earth Syst. 13(5), 2020–002442 (2021)

    Article  Google Scholar 

  40. Iacobello, G., Ridolfi, L., Scarsoglio, S.: A review on turbulent and vortical flow analyses via complex networks. Phys. A Stat. Mech. Appl. 563, 125476 (2021)

    Article  MATH  Google Scholar 

  41. Taira, K., Nair, A.G.: Network-based analysis of fluid flows: progress and outlook. Prog. Aerosp. Sci. 131, 100823 (2022)

    Article  Google Scholar 

  42. Sujith, R., Unni, V.R.: Complex system approach to investigate and mitigate thermoacoustic instability in turbulent combustors. Phys. Fluids 32(6), 061401 (2020)

    Article  Google Scholar 

  43. Kou, J., Zhang, W.: Data-driven modeling for unsteady aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 125, 100725 (2021)

    Article  Google Scholar 

  44. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25(1), 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  45. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Juang, J.-N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guidance Control Dyn. 8(5), 620–627 (1985)

    Article  MATH  Google Scholar 

  47. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  48. Meena, M.G., Nair, A.G., Taira, K.: Network community-based model reduction for vortical flows. Phys. Rev. E 97(6), 063103 (2018)

    Article  Google Scholar 

  49. Meena, M.G., Taira, K.: Identifying vortical network connectors for turbulent flow modification. J. Fluid Mech. 915, A10 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  50. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 563–568 (2008)

  51. Nair, A.G., Taira, K.: Network-theoretic approach to sparsified discrete vortex dynamics. J. Fluid Mech. 768, 549–571 (2015)

    Article  MathSciNet  Google Scholar 

  52. Taira, K., Nair, A.G., Brunton, S.L.: Network structure of two-dimensional decaying isotropic turbulence. J. Fluid Mech. 795, R2 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yeh, C.-A., Meena, M.G., Taira, K.: Network broadcast analysis and control of turbulent flows. J. Fluid Mech. 910, A15 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  54. Nair, A.G., Brunton, S.L., Taira, K.: Networked-oscillator-based modeling and control of unsteady wake flows. Phys. Rev. E 97(6), 063107 (2018)

    Article  Google Scholar 

  55. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)

    Article  Google Scholar 

  56. Goza, A., Colonius, T.: A strongly-coupled immersed-boundary formulation for thin elastic structures. J. Comput. Phys. 336, 401–411 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. Taira, K., Colonius, T.: The immersed boundary method: a projection approach. J. Comput. Phys. 225(2), 2118–2137 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  58. Colonius, T., Taira, K.: A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions. Comput. Methods Appl. Mech. Eng. 197(25–28), 2131–2146 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. Combes, S.A., Daniel, T.L.: Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. J. Exp. Biol. 206(17), 2989–2997 (2003)

    Article  Google Scholar 

  60. Traag, V.A., Waltman, L., Van Eck, N.J.: From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9(1), 1–12 (2019)

    Article  Google Scholar 

  61. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  62. Sirovich, L.: Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Math. 45(3), 561–571 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  63. Feldman, M.: Hilbert transform in vibration analysis. Mech. Syst. Signal Process. 25(3), 735–802 (2011)

    Article  Google Scholar 

  64. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113(15), 3932–3937 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  65. Darakananda, D., Eldredge, J., Colonius, T., Williams, D.R.: A vortex sheet/point vortex dynamical model for unsteady separated flows. In: 54th AIAA Aerospace Sciences Meeting, p. 2072 (2016)

  66. Narsipur, S., Hosangadi, P., Gopalarathnam, A., Edwards, J.R.: Variation of leading-edge suction during stall for unsteady aerofoil motions. J. Fluid Mech. 900, A25 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  67. Nair, N.J., Goza, A.: Fluid-structure interaction of a bio-inspired passively deployable flap for lift enhancement. Phys. Rev. Fluids 7(6), 064701 (2022)

    Article  Google Scholar 

  68. Goza, A., Colonius, T.: Modal decomposition of fluid–structure interaction with application to flag flapping. J. Fluids Struct. 81, 728–737 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

AGN acknowledges the support from the Department of Energy Early Career Research Award (Award No: DE-SC0022945, PM: Dr. William Spotz) and the National Science Foundation AI Institute in Dynamic systems (Award No: 2112085, PM: Dr. Shahab Shojaei-Zadeh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya G. Nair.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Author contributions

AGN conceptualization, methodology, software development, formal analysis, writing and review SD: conceptualization, methodology, software development, validation, formal analysis, investigation, writing original draft NA: data-driven methodology, revision.

Funding

Department of Energy Early Career Research Award (Award no: DE-SC0022945, PM: Dr. William Spotz). National Science Foundation AI Institute in Dynamic systems (Award no: 2112085, PM: Dr. Shahab Shojaei-Zadeh)

Availability of data and materials/Code availability

Datasets and code will be available on https://github.com/nairaditya on publication.

Additional information

Communicated by Julio Soria.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Grid convergence study

The immersed boundary projection methodology used in our study is based on the work by Taira and Colonius [57] and Goza and Colonius [56]. It has been applied in numerous fluid–structure interaction investigations [21, 67, 68]. We conducted a grid convergence analysis focusing on a Reynolds number of \(Re = 100\), an angle of attack \(\alpha = 35^\circ \), a mass ratio \(M_\rho = 3\), and a bending stiffness \(K_\textrm{B} = 0.3125\). This was accomplished by implementing four different grid setups.

Our solver employs a multi-domain approach to expedite the computations [58]. The grid spacing we discuss here pertains to the innermost domain featuring the finest grid. We illustrate the mean drag coefficient (\(C_D\)), its standard deviation, and the duration of a single iteration for each grid in Fig. 9. Additionally, Fig. 9 shows the grid spacing for the various grids.

In our research, we use the grid denoted as G2 for simulations, with a corresponding \(\Delta x/c=0.0077\), notably highlighted in red. The subsequent level of refinement, grid G3, results in a mere \(0.6\%\) alteration in the mean \(C_D\). The standard deviation for \(C_D\) registers at 0.01845 for grid \(G_2\) and slightly less at 0.01815 for grid \(G_3\). Notably, the computational time for a single iteration on grid \(G_3\) nearly doubles that of grid \(G_2\). Consequently, grid \(G_2\) delivers acceptable precision and shorter computational time, making it our choice for all simulations in this case, with a grid spacing of \(\Delta x/c=0.0077\).

Fig. 9
figure 9

Grid convergence study of direct numerical simulation of a flow past a flexible flat plate at Reynolds number \(\hbox {Re} = 100\), angle of attack \(\alpha = 35^\circ \), mass ratio \(M_\rho = 3\), and stiffness \(K_\textrm{B} = 0.3125\). The variation of the mean drag coefficient (left), the standard deviation of the drag coefficient (middle), and the time required for a single time step (right) with different grid spacing are shown. The grid resolution marked in red used in this work achieves a good compromise in simulation time and accuracy

Fig. 10
figure 10

(top) The mean square error in prediction of the test data with different models of sparsity in SINDy. (bottom) The prediction of the vortexlet strength trajectory compared to DNS for \(\lambda > 0.6\)

Appendix B: Sensitivity of sparsity parameter

Sparse identification of nonlinear dynamics (SINDy) [64] employs an L\(_1\) regularization which allows to construct a sparse model for the resulting dynamics. We present a sensitivity analysis of sparsity promoting factor \(\lambda \) by first dividing the data set into training and test data. The mean square error in the prediction of test data set for different \(\lambda \) is presented in Fig. 10. It is observed that \(\lambda > 0.6\) produces minimum error for test data prediction. We employed a value \(\lambda =0.6\) for the data-based prediction in the original manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, A.G., Douglass, S.B. & Arya, N. Network-theoretic modeling of fluid–structure interactions. Theor. Comput. Fluid Dyn. 37, 707–723 (2023). https://doi.org/10.1007/s00162-023-00673-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-023-00673-y

Keywords

Navigation