Skip to main content
Log in

Acoustic receptivity of high-speed boundary layers on a flat plate at angles of attack

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Direct numerical simulation and theoretical analysis of acoustic receptivity are performed for the boundary layer on a flat plate in Mach 6 flow at various angles of attack (AoA). Slow or fast acoustic wave passes through: a bow shock at AoA \(=-5^{\circ }\), a weak shock induced by the viscous–inviscid interaction at AoA \(=0^{\circ }\) or an expansion fan emanating from the plate leading edge at AoA \(=5^{\circ }\). The study is focused on cases where the integral amplification of unstable mode S (or Mack second mode) is sufficiently large \((N\approx 8.4)\) to be relevant to transition in low-disturbance environments. It is shown that excitation of dominant modes F and S occurs in a small vicinity of the plate leading edge. The initial disturbance propagates further downstream in accord with the two-mode approximation model accounting for the mean-flow nonparallel effects and the intermodal exchange mechanism. This computationally economical model can be useful for predictions of the second mode dominated transition onset using the physics-based amplitude method.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Morkovin, M.V., Reshotko, E., Herbert, T.: Transition in open flow systems—a reassessment. Bull. Am. Phys. Soc. 39, 1–31 (1994)

    Google Scholar 

  2. Fedorov, A.: Transition and stability of high-speed boundary layers. Ann. Rev. Fluid Mech. 43, 79–95 (2011). https://doi.org/10.1146/annurev-fluid-122109-160750

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhong, X., Wang, X.: Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers. Ann. Rev. Fluid Mech. 44, 527–561 (2012). https://doi.org/10.1146/annurev-fluid-120710-101208

    Article  MathSciNet  MATH  Google Scholar 

  4. Mack, L.M.: Transition and laminar instability. NASA-CP-153203, Jet Propulsion Lab., Pasadena (1977)

  5. Fedorov, A.V.: Applications of the Mack amplitude method to transition predictions in high-speed flows. NATO RTO-MP-AVT-200 (2012)

  6. Balakumar, P., Chou, A.: Transition prediction in hypersonic boundary layers using receptivity and freestream spectra. AIAA J. 56(1), 1–16 (2017). https://doi.org/10.2514/1.J056040

    Article  Google Scholar 

  7. Marineau, E.C.: Prediction methodology for second-mode dominated boundary-layer transition in wind tunnels. AIAA J. 55(2), 484–499 (2017). https://doi.org/10.2514/1.J055061

    Article  Google Scholar 

  8. Marineau, E.C., Grossir, G., Wagner, A., Leinemann, M., Radespiel, R., Tanno, H., Chynoweth, B.C., Schneider, S.P., Wagnild, R.M., Casper, K.M.: Analysis of second-mode amplitudes on sharp cones in hypersonic wind tunnels. J. Spacecr Rocket. 56(2), 307–318 (2019). https://doi.org/10.2514/1.A34286

    Article  Google Scholar 

  9. Fedorov, A., Tumin, A.: The Mack’s amplitude method revisited. In: AIAA Paper 2021-0851 (2021). https://doi.org/10.2514/6.2021-0851

  10. Zhong, X., Ma, Y.: Boundary-layer receptivity of Mach 7.99 flow over a blunt cone to free-stream acoustic waves. J. Fluid Mech. 556, 55–103 (2006). https://doi.org/10.1017/S0022112006009293

    Article  MATH  Google Scholar 

  11. Balakumar, P., Kegerise, M.A.: Receptivity of hypersonic boundary layers over straight and flared cones. In: 48th AIAA Aerospace Sciences Meeting, AIAA Paper 2010-1065 (2010). https://doi.org/10.2514/6.2010-1065

  12. Balakumar, P, Kegerise, M.A.: Receptivity of hypersonic boundary layers to acoustic and vortical disturbances. In: 49th AIAA Aerospace Sciences Meeting, AIAA Paper 2011-371 (2011). https://doi.org/10.2514/6.2011-371

  13. Ma, Y., Zhong, X.: Receptivity of a supersonic boundary layer over a flat plate. Part 2. Receptivity to free-stream sound. J. Fluid Mech. 488, 79–121 (2003). https://doi.org/10.1017/S0022112003004786

    Article  MathSciNet  MATH  Google Scholar 

  14. Ma, Y., Zhong, X.: Receptivity of a supersonic boundary layer over a flat plate. Part 3. Effects of different types of free-stream disturbances. J. Fluid Mech. 532, 63–109 (2005). https://doi.org/10.1017/S0022112005003836

    Article  MathSciNet  MATH  Google Scholar 

  15. Malik, M.R., Balakumar, P.: Acoustic receptivity of Mach 4.5 boundary layer with leading-edge bluntness. Theor. Comput. Fluid Dyn. 21, 323–342 (2007). https://doi.org/10.1007/s00162-007-0050-5

    Article  MATH  Google Scholar 

  16. Egorov, I.V., Fedorov, A.V., Soudakov, V.G.: Receptivity of a hypersonic boundary layer over a flat plate with a porous coating. J. Fluid Mech. 601, 165–187 (2008). https://doi.org/10.1017/S0022112008000669

    Article  MathSciNet  MATH  Google Scholar 

  17. Maslov, A.A., Shiplyuk, A.N., Sidorenko, A., Arnal, D.: Leading-edge receptivity of a hypersonic boundary layer on a flat plate. J. Fluid Mech. 426, 73–94 (2001). https://doi.org/10.1017/S0022112000002147

    Article  MATH  Google Scholar 

  18. Fedorov, A.V., Khokhlov, A.P.: Excitation of unstable modes in supersonic boundary layer by acoustic waves. Fluid Dyn. 9, 456–467 (1991)

    MATH  Google Scholar 

  19. Fedorov, A.V., Khokhlov, A.P.: Excitation and evolution of unstable disturbances in supersonic boundary layer. Proc. ASME Fluid Eng. Confer. Fed. 151, 1–13 (1993)

    Google Scholar 

  20. Fedorov, A.V., Khokhlov, A.P.: Prehistory of instability in a hypersonic boundary layer. Theoret. Comput. Fluid Dyn. 14, 359–375 (2001)

    Article  Google Scholar 

  21. Fedorov, A.V.: Receptivity of a high-speed boundary layer to acoustic disturbances. J. Fluid Mech. 491, 101–129 (2003). https://doi.org/10.1017/S0022112003005263

    Article  MATH  Google Scholar 

  22. Fedorov, A., Tumin, A.: High-speed boundary-layer instability: old terminology and a new framework. AIAA J. 49(8), 1647–1657 (2011). https://doi.org/10.2514/1.J050835

    Article  Google Scholar 

  23. Tumin, A.: Three-dimensional spatial normal modes in compressible boundary layers. J. Fluid Mech. 586, 295–322 (2007). https://doi.org/10.1017/S002211200700691X

    Article  MathSciNet  MATH  Google Scholar 

  24. Tumin, A.: The biorthogonal eigenfunction system of linear stability equations: A survey of applications to receptivity problems and to analysis of experimental and computational results. In: AIAA Paper 2011-3244 (2011). https://doi.org/10.2514/6.2011-3244

  25. Novikov, A., Egorov, I., Fedorov, A.: Direct numerical simulation of wave packets in hypersonic compression-corner flow. AIAA J. 54(7), 2034–2050 (2016). https://doi.org/10.2514/1.J054665

    Article  Google Scholar 

  26. Novikov, A. V.: Transition induced by a wave train in a supersonic boundary layer over a compression ramp. In: 47th AIAA Fluid Dynamics Conference. AIAA Paper 2017-4517 (2017). https://doi.org/10.2514/6.2017-4517

  27. Chuvakhov, P.V., Fedorov, A.V., Obraz, A.O.: Numerical modelling of supersonic boundary-layer receptivity to solid particulates. J. Fluid Mech. 859, 949–971 (2019). https://doi.org/10.1017/jfm.2018.842

    Article  MathSciNet  MATH  Google Scholar 

  28. Egorov, I.V., Novikov, A.V.: Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds. Comput. Math. Math. Phys. 56(6), 1048–1064 (2016)

    Article  MathSciNet  Google Scholar 

  29. Schneider, S.P.: Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies. Prog. Aerosp. Sci. 40, 1–50 (2004). https://doi.org/10.1016/j.paerosci.2003.11.001

    Article  Google Scholar 

  30. Fedorov, A.V., Khokhlov, A.P.: Receptivity of hypersonic boundary layer to wall disturbances. Theoret. Comput. Fluid Dyn. 15, 231–254 (2002)

    Article  Google Scholar 

  31. Duck, P.W., Lasseigne, D.G., Hussaini, M.Y.: On the interaction between the shock wave attached to a wedge and freestream disturbances. Theoret. Comput. Fluid Dyn. 7, 119–139 (1995)

    Article  Google Scholar 

  32. Mack, L.M.: Boundary layer stability theory. Part B. Doc. 900-277. JPL, Pasadena (1969)

Download references

Funding

The reported study was funded by Russian Science Foundation, Project Number 21-79-00041 (for N. Palchekovskaya) and Project Number 21-19-00307 (for A. Fedorov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Fedorov.

Ethics declarations

Data Availability Statement

All data generated or analyzed during this study are included in this published article.

Additional information

Communicated by Vassilios Theofilis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Herein we evaluate the forced response of the boundary layer to mode S using the two-mode approximation. Consider the system of equations (4.2) in the region \(x{>}x_{n1}\)

$$\begin{aligned} \frac{dC_{k}}{dx} = \sum _{j=1}^ {2} {C_{j}W_{kj}e^{i (S_{j}-S_{k} )}} ,\quad k=1,2, \end{aligned}$$
(A1)

with the initial conditions \(C_{k} (x_{n1} )=C_{k}^{(0)}\). Hereafter the amplitude coefficient \(C_ 1\) corresponds to mode F and \(C_ 2\) to mode S. The substitution \(C_{k} (x )={\tilde{C}}_{k} (x{){\mathrm {exp}}}\left( \int \nolimits _{x_{n1}}^x {W_{kk}dx} \right) \) gives

$$\begin{aligned}&\frac{d{\tilde{C}}_{k}}{dx} = {\tilde{C}}_{j}W_{kj}e^{i ({\tilde{S}}_{j}-{\tilde{S}}_{k} )},\quad {\tilde{C}}_{k} (x_{n} )=C_{k}^{(0)} , \nonumber \\&{\tilde{S}}_{k} = \int \limits _{x_{n1}}^x {\tilde{\alpha }_{k}dx} , \quad \tilde{\alpha }_{k} = \alpha _{k}-iW_{kk}. \end{aligned}$$
(A2)

Since the wavelength \(\lambda _{k}\) is of the order of the boundary layer thickness, the wave number is large: \(\tilde{\alpha }_{k}{=2}\pi /\lambda _{k} = O (L^{{*}} /\lambda _{k}^{{*}} )=O (\varepsilon ^{-1})\), where \(\varepsilon ={\mathrm {{R}{e}}}_{e}^{{-1/2}}\) is a small parameter. After rescaling: \(\tilde{\alpha }_{k} = \varepsilon ^{-1}{\bar{\alpha }}_{k}\), where \(\bar{\alpha }_{k} = O\)(1), the system (A2) reads

$$\begin{aligned} \frac{d{\tilde{C}}_{k}}{dx}= & {} {\tilde{C}}_{j}W_{kj}e^{\varepsilon ^-1i ({\bar{S}}_{j}-{\bar{S}}_{k} )}, {\tilde{C}}_{k} (x_{n1} )=C_{k}^{(0)} , \nonumber \\ {\bar{S}}_{k}= & {} \int \limits _{x_{n1}}^x {{\bar{\alpha }}_{k}dx} . \end{aligned}$$
(A3)

Integrating by parts, we get

$$\begin{aligned} {\tilde{C}}_{k} (x )=C_{k}^{(0)} +O (\varepsilon {)+}{\tilde{C}}_{j} (x )\left[ \varepsilon \frac{W_{kj} (x )}{i (\bar{\alpha }_{j}-{\bar{\alpha }}_{k} )}+O (\varepsilon ^ 2 ) \right] e^{\varepsilon ^{-1i} ({\bar{S}}_{j}-{\bar{S}}_{k} )}. \end{aligned}$$
(A4)

Substituting the amplitude coefficients (A4) into (4.1) and dropping the exponentially small terms proportional to \(e^{\varepsilon ^-1i{\bar{S}}_ 1}\), we obtain

$$\begin{aligned} \varvec{\varPsi } (x,y,t )=C_ {2}^{(0)} e^{i\varepsilon ^-1{\bar{S}}_ {2}}\left\{ \left[ {(1+}O (\varepsilon ) \right] \varvec{\xi }_{2}+\varepsilon \frac{W_{{12}}}{i (\bar{\alpha }_{2}-{\bar{\alpha }}_ {1} )}\left[ {(1+}O (\varepsilon ) \right] \varvec{\xi }_{1} \right\} . \end{aligned}$$
(A5)

Projection of (A5) on BES leads us to the wrong conclusion that the disturbance field consists of the two modes: mode S of the amplitude \({\mathrm {abs}(C_ 2^{(0)} e^{i\varepsilon ^-1{\bar{S}}_ 2}} )\) corresponding to the first term, and mode F of the amplitude \({\mathrm {abs}}\left[ \varepsilon C_ {2}^{(0)} e^{i\varepsilon ^{-1}{\bar{S}}_ 1}\frac{W_{{12}}}{i (\bar{\alpha }_ {2}-{\bar{\alpha }}_{1} )} \right] \) corresponding to the second term. In fact, the both terms in (A5) refer to mode S having the eikonal \({\bar{S}}_ 2\). The second term in (A5) is just a correction of the mode S eigenfunction due to the nonparallel effect. It is associated with a forced response of the boundary layer to mode S.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, A.V., Palchekovskaya, N. Acoustic receptivity of high-speed boundary layers on a flat plate at angles of attack. Theor. Comput. Fluid Dyn. 36, 705–722 (2022). https://doi.org/10.1007/s00162-022-00625-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-022-00625-y

Keywords

Navigation