Skip to main content
Log in

Floquet analysis on a viscous cylindrical fluid surface subject to a time-periodic radial acceleration

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Parametrically excited standing waves are observed on a cylindrical fluid filament. This is the cylindrical analog of the Faraday instability in a flat surface or spherical droplet. Using Floquet theory, a linear stability analysis is carried out on a viscous cylindrical fluid surface, which is subjected to a time-periodic radial acceleration. Viscosity of the fluid has a significant impact on the critical forcing amplitude as well as the dispersion relation of the non-axisymmetric patterns. The effect of viscosity on the threshold of the pattern with azimuthal wavenumber \(m=1\) shows a different dependence from \(m>1\). It is also observed that the effect of viscosity is greater on the threshold with higher m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Faraday, M.: On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Philos. Trans. R. Soc. Lond. 121, 299 (1831). https://doi.org/10.1098/rstl.1831.0018

    Article  Google Scholar 

  2. Miles, J., Henderson, D.: Parametrically forced surface waves. Annu. Rev. Fluid. Mech. 22, 143–165 (1990). https://doi.org/10.1146/annurev.fl.22.010190.001043

    Article  MathSciNet  MATH  Google Scholar 

  3. Matthiessen, L.: Akustische versuche die kleinsten transversalwellen der flüssigkeiten betreffend. Ann. Phys. Chem. 210, 107–117 (1868). https://doi.org/10.1002/andp.18682100506

    Article  Google Scholar 

  4. Kumar, K.: Linear theory of Faraday instability in viscous fluids. Proc. R. Soc. Lond. A 452, 1113 (1996). https://doi.org/10.1098/rspa.1996.0056

    Article  MATH  Google Scholar 

  5. Tufillaro, N., Ramshankar, R., Gollub, J.P.: Order-disorder transition in capillary ripples. Phys. Rev. Lett. 62, 422 (1989). https://doi.org/10.1103/PhysRevLett.62.422

    Article  Google Scholar 

  6. Ciliberto, S., Douady, S., Fauve, S.: Investigating space-time chaos in faraday instability by means of the fluctuations of the driving acceleration. Europhys. Lett. 15, 23 (1991)

    Article  Google Scholar 

  7. Benjamin, B., Ursell, F.: The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. A 225, 505–515 (1954). https://doi.org/10.1098/rspa.1954.0218

    Article  MathSciNet  MATH  Google Scholar 

  8. Edwards, W.S., Fauve, S.: Patterns and quasi-patterns in the faraday experiment. J. Fluid Mech. 278, 123 (1994). https://doi.org/10.1017/S0022112094003642

    Article  MathSciNet  Google Scholar 

  9. Müller, H.W.: Periodic triangular patterns in the faraday experiment. Phys. Rev. Lett. 71, 3287 (1993). https://doi.org/10.1103/PhysRevLett.71.3287

    Article  Google Scholar 

  10. Kumar, K., Bajaj, K.M.S.: Competing patterns in the faraday experiment. Phys. Rev. E 52, R4606 (1995). https://doi.org/10.1103/PhysRevE.52.R4606

    Article  Google Scholar 

  11. Kumar, K., Tuckerman, L.S.: Parametric instability of the interface. J. Fluid Mech. 279, 49–68 (1994). https://doi.org/10.1017/S0022112094003812

    Article  MathSciNet  MATH  Google Scholar 

  12. Kelvin, S.L.: Elastic spheroidal shells and spheroids of incompressible liquid. Philos. Trans. R. Soc. Lond. 153, 583 (1863)

    Google Scholar 

  13. Rayleigh, L.: The Theory of Sound. Macmillan, London (reprinted by Dover Publications, New York) (1896)

  14. Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1932)

    MATH  Google Scholar 

  15. Reid, W.H.: The oscillations of a viscous liquid drop Q. Appl. Math. 18, 86–89 (1960). https://doi.org/10.1090/qam/114449

    Article  MathSciNet  Google Scholar 

  16. Chandrasekhar, S.C.: (1961) Hydrodynamic and Hydromagnetic Stability. 3rd edn, Clarendon Press. (reprinted by Dover Publications, New York) (1981)

  17. Miller, C.A., Scriven, L.E.: The oscillations of a fluid droplet immersed in another fluid. J. Fluid Mech. 32, 417–435 (1968). https://doi.org/10.1017/S0022112068000832

    Article  MATH  Google Scholar 

  18. Plateau, J.A.F.: Mémoire sur les phénomènes que présente une masse liquide libre et soustraite à l’action de la pesanteur. Acad. Sci. Brux. Mem. 16, 3 (1843)

    Google Scholar 

  19. Bohr, N.: Determination of the surface-tension of water by the method of jet vibration. Philos. Trans. R. Soc. Lond. A 209, 441–458 (1909). https://doi.org/10.1098/rspa.1909.0014

    Article  MATH  Google Scholar 

  20. Popinet, S.: An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 5838–5866 (2009). https://doi.org/10.1016/j.jcp.2009.04.042

    Article  MathSciNet  MATH  Google Scholar 

  21. Cervone, A., Manservist, S., Scardovellt, R.: Simulation of axisymmetric jets with a finite element Navier–Stokes solver and a multilevel VoF approach. J. Comput. Phys. 229, 6853–6873 (2010). https://doi.org/10.1016/j.jcp.2010.05.025

    Article  MathSciNet  MATH  Google Scholar 

  22. Farsoiya, P.K., Mayya, Y.S., Dasgupta, R.: Axisymmetric viscous interfacial oscillations-theory and simulations. J. Fluid Mech. 826, 797–818 (2017). https://doi.org/10.1017/jfm.2017.443

    Article  MathSciNet  MATH  Google Scholar 

  23. Shen, C.L., Xie, W.J., Wei, B.: Parametrically excited sectorial oscillation of liquid drops floating in ultrasound. Phys. Rev. E 4, 046305 (2010). https://doi.org/10.1103/PhysRevE.81.046305

    Article  Google Scholar 

  24. Hill, R.J.A., Eaves, L.: Vibrations of a diamagnetically levitated water droplet. Phys. Rev. E 81, 056312 (2010). https://doi.org/10.1103/PhysRevE.81.056312

    Article  Google Scholar 

  25. Noblin, X., Buguin, A., Brochard-Wyart, F.: Triplon modes of puddles. Phys. Rev. Lett. 94, 166102 (2005). https://doi.org/10.1103/PhysRevLett.94.166102

    Article  Google Scholar 

  26. Brunet, P., Snoeijer, J.H.: Star-drops formed by periodic excitation and on an air cushion—a short review. Eur. Phys. J. 192, 207–226 (2011). https://doi.org/10.1140/epjst/e2011-01375-5

    Article  Google Scholar 

  27. Ebo-Adou, A., Tuckerman, L.S.: Faraday instability on a sphere: floquet analysis. J. Fluid Mech. 805, 591 (2016). https://doi.org/10.1017/jfm.2016.542

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, Y., Zhang, P., Kang, N.: Linear analysis on the interfacial instability of a spherical liquid droplet subject to a radial vibration. Phys. Fluids 30, 102104 (2018). https://doi.org/10.1063/1.5050517

    Article  Google Scholar 

  29. Maity, D.K., Kumar, K., Khastgir, S.P.: Instability of a horizontal water half-cylinder under vertical vibration. Exp. Fluids 61, 25 (2020). https://doi.org/10.1007/s00348-019-2860-9

    Article  Google Scholar 

  30. Patankar, S., Farsoiya1 PK and Dasgupta R, : Faraday waves on a cylindrical fluid filament—generalised equation and simulations. J. Fluid Mech. 857, 80–110 (2018). https://doi.org/10.1017/jfm.2018.657

  31. Wang, T.G., Anilkumar, A.V., Lee, C.P.: Oscillations of liquid drops: results from USML-1 experiments in space. J. Fluid Mech. 308, 1–14 (1996). https://doi.org/10.1017/S002211209600136X

    Article  Google Scholar 

  32. Futterer, B., Krebs, A., Plesa, A.C., Zaussinger, F., Hollerbach, R., Breuer, D., Egbers, C.: Sheet-like and plume-like thermal flow in aspherical convection experiment performed under microgravity. J. Fluid Mech. 735, 647–683 (2013). https://doi.org/10.1017/jfm.2013.507

    Article  MATH  Google Scholar 

  33. Falcon, C., Falcon, E., Bortolozzo, U., Fauve, S.: Capillary wave turbulence on a spherical fluid surface in low gravity. Europhys. Lett. 86, 14002 (2009). https://doi.org/10.1209/0295-5075/86/14002

    Article  Google Scholar 

  34. Batson, W., Zoueshtiagh, F., Narayanan, R.: The Faraday threshold in small cylinders and the sidewall non-ideality. J. Fluid Mech. 729, 496–523 (2013). https://doi.org/10.1017/jfm.2013.324

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Krishna Kumar and Sonjoy Majumder for fruitful discussions. The author is also thankful to Moupiya Jana for a careful reading of the manuscript. The author acknowledges the fruitful suggestions from the anonymous referees, which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip Kumar Maity.

Additional information

Communicated by Vassilios Theofilis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, D.K. Floquet analysis on a viscous cylindrical fluid surface subject to a time-periodic radial acceleration. Theor. Comput. Fluid Dyn. 35, 93–107 (2021). https://doi.org/10.1007/s00162-020-00550-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-020-00550-y

Keywords

Navigation