Skip to main content
Log in

Investigation of pressure and the Lewis number effects in the context of algebraic flame surface density closure for LES of premixed turbulent combustion

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Large scale industrial combustion devices, for example, internal combustion engines, gas turbine combustors, etc., operate under high-pressure conditions and utilize a variety of fuels. Unfortunately, the majority of the current numerical combustion modelling approaches are not fully validated for high-pressure and the non-unity Lewis number (\(\hbox {Le} =\) thermal diffusivity/mass diffusivity) effects in premixed turbulent combustion. In any case, a numerical model needs to be checked for the effects of these parameters to guarantee generality of the model. In the present study, these two critical features of the models are numerically explored utilizing fundamental elements of several algebraic flame surface density reaction rate closure models accessible in the open literature. The Lewis number impact is likewise examined utilizing LES of recently published subgrid scale fractal flame surface density model, which indicated acceptable results for high and low-pressure methane fuelled applications. The computed numerical results are compared with an extensive experimental dataset for lean methane and propane fuels featuring various flow and turbulence conditions at operating pressures in the range of 1–10 bar. The quantitative results from most of the selected models do not show the experimentally observed trends at high-pressures and for non-unity Le number fuels. Modifications to the models are incorporated to reflect effects of these two important parameters utilizing a broad parametric investigation resulting in a satisfactory agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

c :

Reaction progress variable

\(C_\mathrm{A}\) :

Angelberger model constant

\(C_\mathrm{D}\) :

Keppeler model constant

\(C_\mathrm{K}\) :

Keppeler model constant

\(C_\mathrm{Z}\) :

Zimont model constant

D :

Fractal dimension

Da:

Damköhler number

k :

Turbulent kinetic energy (m\(^{\mathrm {2}}\)/s\(^{\mathrm {2 }}\))

\({\hbox {Ka}}_{\Delta }\) :

Subgrid Karlovitz number

l :

Integral length scale of turbulence (m)

Le:

Lewis number

\(\hbox {Ma}\) :

Markstein number

p :

Pressure, Pa

\(\hbox {Re}\) :

Reynolds number

\(s_\mathrm{T}\) :

Turbulent flame speed (m/s)

\(s_\mathrm{L}^{0}\) :

Un-stretched laminar flame speed (m/s)

\(s_\mathrm{L}\) :

Stretched laminar flame speed (m/s)

\(S_{ij}\) :

Shear stress tensor (1/s)

\({Sc}_\mathrm{t}\) :

Schmidt number

t :

Time (s)

T :

Temperature (K)

\(u^{'}\) :

RMS turbulent velocity (m/s)

\(u_{\Delta }^{'}\) :

Subgrid scale velocity fluctuations (m/s)

\(u_\mathrm{i}\) :

Velocity component (m/s)

U :

Bulk velocity at inlet (m/s)

\(x_\mathrm{i}\) :

Spatial coordinate i (m)

\(\alpha \) :

Diffusivity (m\(^{\mathrm {2}}\)/s)

\(\alpha _{th}\) :

Thermal diffusivity (m\(^{\mathrm {2}}\)/s)

\({\Gamma }\) :

Efficiency function

\(l_{F}\) :

Laminar flame thickness (m)

\({\Delta }\) :

Filter size (m)

\(\varepsilon _\mathrm{i}\) :

Inner cut off scale (m)

\(\varepsilon _\mathrm{o}\) :

Outer cut off scale (m)

\(\kappa \) :

Flame stretch rate (1/s)

\(\kappa _\mathrm{s}\) :

Flame strain rate (1/s)

\(\mu \) :

Dynamic viscosity (kg/ms)

\(\nu \) :

Kinematic viscosity (m\(^{\mathrm {2}}\)/s)

\(\rho \) :

Density (kg/m\(^{\mathrm {3}}\))

\(\varSigma _\mathrm{gen}\) :

Flame surface density (1/m)

\(\tau \) :

Heat release factor

\(\varphi \) :

Flame angle, radian

\({\dot{\omega }}\) :

Turbulent reaction source term (kg/m\(^{\mathrm {3}}\)s)

\(\varXi \) :

Flame wrinkling factor

b:

Burned state

i:

Inner

o:

Outer

res:

Resolved

sgs:

Subgrid scale

t:

Turbulent

u:

Unburned state

AFSD:

Algebraic flame surface density

DNS:

Direct numerical simulation

FSD:

Flame surface density

LES:

Large Eddy simulation

RANS:

Reynolds-averaged Navier Stokes

RHS:

Right-hand-side of an equation

SGSF:

Subgrid scalar flux

References

  1. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Menon, S., Jou, W.: Large Eddy simulations of combustion instability in an axisymmetric ramjet combustor. Combust. Sci. Technol. 75(1–3), 53–72 (1991)

    Google Scholar 

  3. Butler, T.D., O’Rourke, P.J.: A numerical method for two dimensional unsteady reacting flows. Proc. Symp. (Int.) Combust. 16(1), 1503–1515 (1977)

    Google Scholar 

  4. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for Large Eddy simulations of turbulent premixed combustion. Phys. Fluids 12(7), 1843–1863 (2000)

    Google Scholar 

  5. Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for Large Eddy simulation of turbulent premixed combustion. Proc. Symp. (Int.) Combust. 27(1), 917–925 (1998)

    Google Scholar 

  6. Hawkes, E., Cant, R.S.: A flame surface density approach to Large Eddy simulation of premixed turbulent combustion. Proc. Combust. Inst. 28(1), 51–58 (2000)

    Google Scholar 

  7. Duwig, C., Fureby, C.: Large Eddy simulation of unsteady lean stratified premixed combustion. Combust. Flame 151(1–2), 85–103 (2007)

    Google Scholar 

  8. Aluri, N., Muppala, S.P.R., Dinkelacker, F.: Large Eddy simulation of lean premixed turbulent flames of three different combustion configurations using a novel reaction closure. Flow Turbul. Combust. 80(2), 207–224 (2008)

    Google Scholar 

  9. Kobayashi, H., Nakashima, T., Tamura, T., Maruta, K., Niioka, T.: Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 MPa. Combust. Flame 108(1–2), 104–117 (1997)

    Google Scholar 

  10. Bounif, A., Aris, A., Gökalp, I.: Pressure effects on the spectral behaviour of the thermal field in non-reacting and Low Damköhler reacting flows. Int. J. Therm. Sci. 38(9), 819–831 (1999)

    Google Scholar 

  11. Soika, A., Dinkelacker, F., Leipertz, A.: Pressure influence on the flame front curvature of turbulent premixed flames: comparison between experiment and theory. Combust. Flame 132(3), 451–462 (2003)

    Google Scholar 

  12. Kobayashi, H., Kawabata, Y., Maruta, K.: Experimental study on general correlation of turbulent burning velocity at high pressure. Proc. Symp. (Int.) Combust. 27(1), 941–948 (1998)

    Google Scholar 

  13. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 2nd edn. Edwards, Morningside (2005)

    Google Scholar 

  14. Rasool, R., Chakraborty, N., Klein, M.: Algebraic flame surface density modelling of high pressure turbulent premixed Bunsen flames. Flow Turbul. Combust. (2020)

  15. Alqallaf, A., Klein, M., Dopazo, C., Chakraborty, N.: Evolution of flame curvature in turbulent premixed Bunsen flames at different pressure levels. Flow Turbul. Combust. 103, 439–463 (2019)

    Google Scholar 

  16. Wnag, X., Jin, T., Xie, Y., Kuo, K.L.: Pressure effects on flame structures and chemical pathways for lean premixed turbulent H\(_{\rm 2}\)/air flames: Three-dimensional DNS studies. Fuel 215, 320–329 (2018)

    Google Scholar 

  17. Wang, Z., Magi, V., Abraham, J.: Turbulent flame speed dependencies in lean methane-air mixtures under engine relevant conditions. Combust. Flame 180, 53–62 (2017)

    Google Scholar 

  18. Savard, B., Lapointe, S., Teodorczyk, A.: Numerical investigation of the effect of pressure on heat release rate in iso-octane premixed turbulent flames under conditions relevant to SI engines. Proc. Combust. Inst. 36, 3543–3549 (2017)

    Google Scholar 

  19. Devaud, C., Bushe, W.K., Bellan, J.: Assessment of Conditional Source-Term Estimation for High Pressure turbulent combustion modelling. AIAA SciTech Forum, San Diego, California (2019)

    Google Scholar 

  20. Muppala, S.P.R., Aluri, N.K., Dinkelacker, F., Leipertz, A.: Development of an algebraic reaction rate closure for the numerical calculation of turbulent premixed methane, ethylene and propane/air flames for pressures up to 1.0 MPa. Combust. Flame 140(4), 257–266 (2005)

    Google Scholar 

  21. Aluri, N.K., Muppala, S.P.R., Dinkelacker, F.: A test of validation of turbulent premixed models for high-pressure Bunsen flames. In: Proceedings European Combust Meeting (2005)

  22. Aluri, N.K., Muppala, S.P.R., Dinkelacker, F.: Substantiating a fractal-based algebraic reaction closure of premixed turbulent combustion for high pressure and the Lewis number effects. Combust. Flame 145, 663–774 (2006)

    Google Scholar 

  23. Dinkelacker, F., Manickam, B., Muppala, S.P.R., Aluri, N.K.: Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames for two flow configurations. In: Proceedings of CHT-08 ICHMT International Symposium on Advances in Computational Heat Transfer (2008)

  24. Dinkelacker, F., Manickam, B., Muppala, S.P.R.: Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach. Combust. Flame 158(9), 1742–1749 (2011)

    Google Scholar 

  25. Lindstedt, R., Váos, E.: Modelling of premixed turbulent flames with second moment methods. Combust. Flame 116(4), 461–485 (1999)

    Google Scholar 

  26. Keppeler, K., Tangermann, E., Allauddin, U., Pfitzner, M.: LES of low to high turbulent combustion in an elevated pressure environment. Flow Turbul. Combust. 92(3), 767–802 (2014)

    Google Scholar 

  27. Allauddin, U., Keppeler, K., Pfitzner, M.: Turbulent premixed les combustion models based on fractal flame surface density concepts. In: Proceedings of ASME Turbo Expo: Turbine Technical Conference and Exposition GT2014 June 16–20, 2014. German, Düsseldorf (2014)

  28. Allauddin, U., Pfitzner, M.: Development of a RANS premixed turbulent combustion model based on the algebraic flame surface density concept. J. Eng. Gas Turbines Power 141, 1–8 (2019)

    Google Scholar 

  29. Lipatnikov, A.N., Chomiak, J.: Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust. Sci. 31(1), 1–73 (2005)

    Google Scholar 

  30. Abdel-Gayed, R.G., Bradley, D., Hamid, M.N., Lawes, M.: Lewis number effects on turbulent burning velocity. Symp. (Int.) Combust. 20(1), 505–512 (1984)

    Google Scholar 

  31. Chakraborty, N., Cant, R.S.: Effects of Lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame 158(9), 1768–1787 (2011)

    Google Scholar 

  32. Klein, M., Chakraborty, N., Pfitzner, M.: Analysis of the combined modelling of sub-grid transport and filtered flame propagation for premixed turbulent combustion. Flow Turbul. Combust. 96(4), 921–938 (2016)

    Google Scholar 

  33. Angelberger, C., Veynante, D., Egolfopoulos, F., Poinsot, T.: Large Eddy simulations of combustion instabilities in premixed flames. In: Proceedings of Summer Program, Center for Turbulence Research, 5–31 July 1998, NASA Ames/Stanford University, pp. 61-82 (1998)

  34. Fureby, C.: A fractal flame wrinkling Large Eddy simulation model for premixed turbulent combustion. Proc. Combust. Inst. 30(1), 593–601 (2005)

    Google Scholar 

  35. Zimont, V., Lipatnikov, A.: A numerical model of premixed turbulent combustion of gases. Chem. Phys. Rep. 14(7), 993–1025 (1995)

    Google Scholar 

  36. Kobayashi, H., Tamura, T., Maruta, K., Niioka, T., Williams, F.A.: Burning velocity of turbulent premixed flames in a high pressure environment. Proc. Combust. Inst. 26(1), 389–396 (1996)

    Google Scholar 

  37. Gouldin, F.: An application of fractals to modelling premixed turbulent flames. Combust. Flame 68(3), 249–266 (1987)

    Google Scholar 

  38. Allauddin, U., Klein, M., Pfitzner, M., Chakraborty, N.: A-priori and a-posteriori analysis of algebraic flame surface density modelling in the context of Large Eddy Simulation of Turbulent Premixed Combustion. Numer. Heat Transfer Part A 71(2), 153–171 (2014)

    Google Scholar 

  39. Schumann, U.: Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli. J. Comput. Phys. 18(1), 376–404 (1975)

    Google Scholar 

  40. Fureby, C., Tabor, G., Weller, H.G., Gosman, A.D.: A comparative study of subgrid scale models in homogeneous isotropic turbulence. Phys. Fluids 9(5), 1416–1429 (1997)

    MathSciNet  Google Scholar 

  41. Clavin, P.: Dynamic behaviour of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. 11(1), 1–59 (1985)

    Google Scholar 

  42. Muller, U.C., Bollig, M., Peters, N.: Approximations for burning velocities and Markstein numbers for lean hydrocarbon and methanol flames. Combust. Flame 108(3), 349–356 (1997)

    Google Scholar 

  43. Hawkes, E., Cant, R.S.: Implications of a flame surface density approach to Large Eddy simulation of turbulent premixed combustion. Combust. Flame 126(3), 1617–1629 (2001)

    Google Scholar 

  44. Meneveau, C., Poinsot, T.: Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame 86(4), 311–332 (1999)

    Google Scholar 

  45. Keppeler, R.: Entwicklung und Evaluierung von Verbrennungsmodellen für die Large Eddy Simulation der Hochdruck-Vermischverbrennung. PhD. Thesis, University of Bundeswehr, Munich (2013)

  46. Kempf, A., Klein, M., Janicka, J.: Efficient generation of initial and inflow conditions for transient turbulent flows in arbitrary geometries. Flow Turbul. Combust. 74(1), 67–84 (2005)

    Google Scholar 

  47. Tangermann, E., Pfitzner, M.: Evaluation of combustion models for combustion-induced vortex break-down. J. Turbul. 10, N7 (2009)

    Google Scholar 

  48. OpenFOAM CFD Limited. OpenFOAM User Guide http://cfd.direct/openfoam/user-guide/ (Access on 07 May 2020)

  49. Bray, K.N.C., Moss, J.B.: A unified statistical model of the premixed turbulent flame. Acta Astronaut. 4(3–4), 291–319 (1977)

    Google Scholar 

  50. Chakraborty, N., Klein, M.: A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of Large Eddy simulation. Phys. Fluids 20(8), 85–108 (2008)

    Google Scholar 

  51. Ma, T., Stein, O.T., Chakraborty, N., Kempf, A.M.: A posteriori testing of algebraic flame surface density models for LES. Combust. Theor. Model. 17(3), 431–482 (2013)

    MathSciNet  Google Scholar 

  52. Ma, T., Stein, O.T., Chakraborty, N., Kempf, A.M.: A posteriori testing of the flame surface density transport equation for LES. Combust. Theor. Model. 18(1), 32–64 (2014)

    MathSciNet  Google Scholar 

  53. Katragadda, M., Chakraborty, N., Cant, R.S.: A priori assessment of algebraic flame surface density models in the context of Large Eddy simulation for non-unity Lewis number flames in the thin reaction zones regime. J. Combust. 2012, article ID 794671, 17 pages (2012)

  54. Katragadda, M., Chakraborty, N., Cant, R. S.: Effects of turbulent reynolds number on the performance of algebraic flame surface density models for Large Eddy simulation in the thin reaction zones regime: a direct numerical simulation analysis. J. Combust. 2012, article ID 353257, 13 pages (2012)

  55. Allauddin, U.: Modelling of Turbulent Premixed Flames using LES and RANS Methods. PhD Thesis, University of Bundeswehr, Munich (2017)

  56. Driscoll, J.F.: Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34(1), 91–134 (2008)

    Google Scholar 

  57. Kobayashi, H., Kawazoe, H.: Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames. Proc. Combust. Inst. 28(1), 375–382 (2000)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to ITIS and NED University of Engineering & Technology, Karachi, Pakistan for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usman Allauddin.

Additional information

Communicated by Patrick Jenny.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

This section shows the calculation of pressure exponent n of the explicit pressure correction term for adapted Model-A and Model-Z.

Model-A

For \(\varXi \gg 1\), Eq. (13) for Model-A without an explicit pressure correction term can be written as:

$$\begin{aligned} \varXi = \left[ C_\mathrm{A} \varGamma \frac{u_{{\varDelta }}^{\mathrm {'}}}{s_\mathrm{L}^{0}} \right] =\frac{s_\mathrm{T}}{s_\mathrm{L}^{0}}, \end{aligned}$$
(A1)
$$\begin{aligned} \varXi *s_\mathrm{L}^{0} =\left[ C_\mathrm{A} \varGamma \frac{u_{{\varDelta }}^{\mathrm {'}}}{s_\mathrm{L}^{0}} \right] s_\mathrm{L}^{0} = s_\mathrm{T}. \end{aligned}$$
(A2)

From Eq. (A2), the pressure dependence of the predicted turbulent flame speed \(s_\mathrm{T}\) from the Model-A is calculated and compared with the experimentally observed pressure dependence of turbulent flame speed, which is \(s_\mathrm{T}\propto p^{0.07}\) for methane [29]. For methane using \(s_\mathrm{L}^{0}\propto p^{-0.5}\) and \(l_{F}\propto p^{-0.5}\), the pressure dependence of the efficiency function from Eq. (10) is found to be \(\varGamma \propto p^{1/3}\). Putting the pressure dependence values of \(s_\mathrm{L}^{0}\) and \(\varGamma \) in Eq. (A2) and we get \(\varXi *s_\mathrm{L}^{0}\propto p^{1/3}/p^{-0.5}{*p}^{-0.5}=p^{1/3}\). The pressure exponent of 0.33 is larger than the experimental one 0.07. Now an explicit pressure correction term \(\left( p/p_{0} \right) ^{n}\) is introduced in Eq. (A1) with a value of n giving the correct pressure dependence of \(s_\mathrm{T}\):

$$\begin{aligned} \left( \frac{p}{p_{0}} \right) ^{n}*\varXi *s_\mathrm{L}^{0}\mathrm {=}\left( \frac{p}{p_{0}} \right) ^{n}\left[ C_\mathrm{A} \varGamma \mathrm {}\frac{u_{{\varDelta }}^{\mathrm {'}}}{s_\mathrm{L}} \right] s_\mathrm{L}^{0}. \end{aligned}$$
(A3)

For Model-A, n is found to be -0.25 which is giving the experimental dependence of \(s_\mathrm{T}\)close to zero for methane i.e. \(\left( p/p_{0} \right) ^{n}*\varXi *s_\mathrm{L}^{0}\propto p^{-0.25}*p^{1/3}/p^{-0.5}{*p}^{-0.5}=p^{0.08}\). It is noted that in above calculations \(u_{{\varDelta }}^{\mathrm {'}}\) is taken to be independent of pressure. At high Reynolds number and constant inlet velocity, \(u^{'}\) will be approximately constant. However, with increasing pressure and thus increasing Reynolds number the Kolmogorov length decreases. At constant filter width the total subgrid turbulent energy and therefore \(u_{{\varDelta }}^{'}\) may increase slightly. However, as discussed in Sect. 6.3, LES simulation using the adapted Model-A with \(n=-0.25\) gives very good agreement of the predicted turbulent flame speed with the experimental data, justifying the assumption of a small effect of a pressure variation of \(u_{{\varDelta }}^{\mathrm {'}}\) on the turbulent flame speed.

Model-Z

A similar analysis is performed for the Model-Z with Eq. (16) and n is found to be 0.15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allauddin, U., Lomada, S.R.R. & Pfitzner, M. Investigation of pressure and the Lewis number effects in the context of algebraic flame surface density closure for LES of premixed turbulent combustion. Theor. Comput. Fluid Dyn. 35, 17–37 (2021). https://doi.org/10.1007/s00162-020-00543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-020-00543-x

Keywords

Navigation